BIOLOGICAL NITROGEN REMOVAL FOR PASSIVE ONSITE WASTEWATER TREATMENT SYSTEMS USING SALTWATER TOILET FLUSHING

National Onsite Wastewater Recycling Association 2022 Mega-Conference

Co-authors: **Daniel Delgado**, Tione Grant, Maria Lucas, Dr. Sarina Ergas, Dr. Maya Trotz Department of Civil and Environmental Engineering October 31,2022

Laughing Bird Caye National Park 12 July 2022

Laughing Bird Caye National Park, Belize

- 11 miles from coast of Belize
- World Heritage Site
- Coral cover reduced to 6% after Hurricane Iris in 2001
- Active coral restoration since 2006
- Coral cover > 60% in 2022

Image by:

Nutrient Pollution

Sources:

Fossil fuel and biomass combustion Agricultural runoff Urban runoff Industrial waste Incomplete wastewater treatment Impacts: Eutrophication Groundwater contamination Negatively impacts human health and local economies

Laughing Bird **Caye National Park Wastewater Treatment System**

Carriers

Carriers

Δ

Conventional Septic System

Conventional Septic System

Nitrification Denitrificaiton

Conventional Septic System

Passive Nitrogen Reducing System with ^a Seawater used for Toilet Flushing

Research Aims

Goal: Examine nutrient removal options in onsite wastewater treatment systems for water-stressed coastal environments

- 1. A trickling filter can provide enough aeration in a saline environment to convert a majority of the NH_4^+ to NO_3^- .
- 2. Organic industrial wastes that are readily available in the local context can be used as slow-release electron donors for denitrification in OWTS applications where seawater is used for toilet flushing.

Passive Nitrogen Reducing System with Seawater used for Toilet Flushing

Passive Nitrogen Reducing System with Seawater used for Toilet Flushing

Media in Laboratory Scale System: Nitrification Column

Lightweight Expanded

Clay Aggregate

A) 60% <4.75-3.35mm

B) 30% <3.35-2.36mm

C) 10% <2.36-2mm

Laboratory Scale System: Nitrification Column

Nitrogen Speciation for 3 different salinities

% NH₄⁺ removal 82% for 0.1

78% for 1.5 and 3

Passive Nitrogen Reducing System with Seawater used for Toilet Flushing

Banana Stem

Sulfur Pellets

Pine Wood Chips

Sugar Cane Bagasse

Media:

1 cm L,W,H

Washed w/ potable water x3 and Deionized water x3

Dried for 48 hrs in 32°C constant temperature room

Denitrification Microcosm

~0.1% Salinity

Saltwater - 3% salinity

Makeup water:

Effluent from Northwest Regional Water Reclamation Facility (NRWRF) Hillsborough, FL

 $NaNO_3^-$ to bring NO_3^- -N 60 mg/L

50 ml Inoculated with Return Activated Sludge from NRWRF

Zero and First-order Kinetics

$$\mathbf{C}_{\mathrm{t}} = \mathbf{C}_{\mathrm{0}} - \mathbf{K}_{\mathrm{0}}\mathbf{t}$$

$$C_t = C_0 e^{-Kt}$$

Where:

 C_0 and C_t = nitrate concentrations at time "0" and time "t" respectively K_0 = zero-order rate constant (mg/L·day) K = first-order rate constant (1/day)

Denitrification: Electron Donor

	Zero Order		First Order	
	R ²	$K_0 (mg/L \cdot day)$	\mathbb{R}^2	K ₁ (1/day)
Low Salinity 50 g				
Endogenous Decay	0.966	10.0	0.991	0.232
Sugarcane Bagasse	NED	46.2	NED	2.846
Sulfur Pellets	0.962	15.6	0.992	0.489
Pine Wood Chips	NED	34.2	NED	1.077
Banana Stem	NED	24.9	NED	1.028
Low Salinity 20 g				
Endogenous Decay	0.966	7.2	0.997	0.144
Sugarcane Bagasse	0.833	1.7	0.871	0.067
Sulfur Pellets	0.767	12.6	0.901	0.395
Pine Wood Chips	0.986	21.5	0.995	0.638
Banana Stem	0.999	15.8	0.993	0.483
3% Salinity 50 g				
Endogenous Decay	0.976	6.0	0.989	0.128
Sugarcane Bagasse	0.595	21.0	0.721	0.983
Sulfur Pellets	0.992	17.9	0.998	0.168
Pine Wood Chips	0.833	30.6	0.754	0.529
Banana Stem	0.785	34.0	0.784	0.579
3% Salinity 20g				
Endogenous Decay	0.967	4.4	0.992	0.103
Sugarcane Bagasse	0.307	1.7	0.313	0.123
Sulfur Pellets	0.929	5.7	0.979	0.140
Pine Wood Chips	0.975	18.0	0.919	0.726
Banana Stem	0.999	9.2	0.941	0.309

Denitrification: Electron Donor

Pine Wood Chips and Banana Stem $\star \star \star$

Sulfur Pellets $\star \star$

Sugar Cane Bagasse \chi pH

Conclusions

Goal: Examine nutrient removal options for passive onsite wastewater treatment in water-stressed coastal environments

- 1. Ammonia oxidation in nitrification column showed no significant difference with respect to salinity, 82-78% NH₄⁺ removal
- 2. Woodchips, banana stem, sulfur pellets good electron donors at 3% salinity

Longer denitrification microcosm study

Full system with best denitrification electron donor

Treatment train orientation

Microscopy

Acknowledgements

Drs. Ergas and Trotz Research Groups.

Luis Garcia and EcoFriendly Solutions, Belize.

This material is based on work supported by the Alfred P. Foundation University Center of Exemplary Mentoring (UCEM) Award -G-2017-9717, grant P200A180047 from the U.S. Department of Education Graduate Assistance in Areas of National Need (GAANN) program, and the National Science Foundation under Grants No. 1735320.

Any opinions, findings, conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of any funding agency.

The opinions expressed are that of the author and not that of NOWRA

ALFRED P. SLOAN FOUNDATION

Questions?

Daniel Delgado (arnulfo1@usf.edu)

Freshwater Microcosms 50g Donor

26

3% Salinity Microcosms 20g Electron Donor

Endogenous Decay 2 Sulfur Pellets 2 Sugar Cane Bagasse 2 mg/L-N 40 N-T/8 m 20 mg/L-N • n Days Days Days Banana Stem 2 Pine Wood Chips 2 NH_4^+ \bigcirc mg/L-N mg/L-N NO₃⁻ • NO_2^- Days Days

Analytical Methods

- TAN and NOx: Timberline Ammonia Analyzer
- NO₂⁻: Standard Methods and Strickland and Parsons
- COD: HACH method 8000 (3–150 mg/L)
- Dissolved Oxygen, pH, Temperature, Salinity: Thermo Scientific Orion 5 Star meter
- TSS, VSS, Alkalinity: Standard Methods

0.1 and 1.5% Salinity TIN removal w/ Denitrification

▲Sep.Inf1 ●Sep. Inf2 △Den.Eff1 ODen.Eff2

3% nitrification column

SOUTH FLORIDA

