

Achieving Secondary Wastewater Treatment Standards using Zero-Energy Combined Treatment and Dispersal Technology David Lentz, P.E.

Content Notice

The materials being presented represent the presenter's opinions, and do NOT reflect the opinions of NOWRA.

There are multiple combined treatment and dispersal systems approved by regulatory agencies. These products are produced by several manufacturers. Since showing all designs and performance results is not practical, this presentation depicts designs from one manufacturer.

The audience can search for "combined treatment and dispersal systems" to find additional information on the topic and information on other products within the technology group.

DID YOU KNOW?

Onsite wastewater systems are used in 30 million **U.S. homes – serving** 25% of the population

"...4 billion gallons of sewage is treated by onsite/ decentralized systems in the **USA** every day."

USEPA

One-third of new homes built in the U.S. use onsite wastewater treatment systems

Conventional Septic System

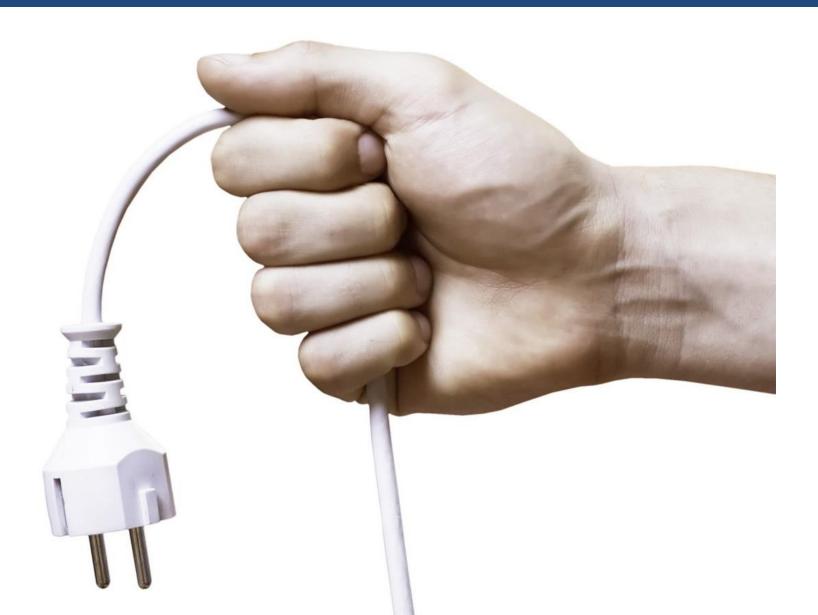
United States Environmental Protection

Please note: Septic systems vary. Diagram is not to scale.

Conventional Drainfield Distributes Wastewater

What if Wastewater Treatment is Needed?

https://www.yolocounty.org/government/general-government-departments/community-services/environmentalhealth-division/land-use-programs/onsite-wastewater-treatment-system-program/types-of-owts-septic-systems Electromechanical systems treat wastewater to secondary standards requiring:


- Electricity
- Maintenance
- Blower
- Separate drainfield

Separate Treatment and Dispersal Systems

https://www.yolocounty.org/government/general-government-departments/community-services/environmentalhealth-division/land-use-programs/onsite-wastewater-treatment-system-program/types-of-owts-septic-systems

What about Treatment without Electricity?

Combined Treatment and Dispersal System

Why Combined Treatment and Dispersal?

- Two functions in one footprint
- Zero-electric passive operation
- Resilient naturally occurring microbes
- Stable, reliable performance
- High wastewater purification levels
- Design versatility for nutrient removal
- No moving parts or special maintenance
- Smaller footprint vs. legacy systems

No Special Maintenance

- Pump septic tank as needed
- If installed, clean effluent filter
- If installed, check observation ports
- Maintain vegetated system cover

CTD Provides Another Tool in the Toolbox

CTD is an Emerging Technology

- Increasing wastewater reclamation needs
- Increasing treatment system demand
- National performance standard certification availability
- Increasing energy conservation awareness
- Improved design and manufacturing methods
- Broadening regulatory recognition

CTD in 2024 Uniform Plumbing Code

- CTD included in 2024 UPC preprint
- Appendix H Private Sewage Disposal Systems
- 2024 UPC preprint is available:
 - www.iapmo.org
 - Hover over "Codes & Standards"
 - Click on "Code Development"

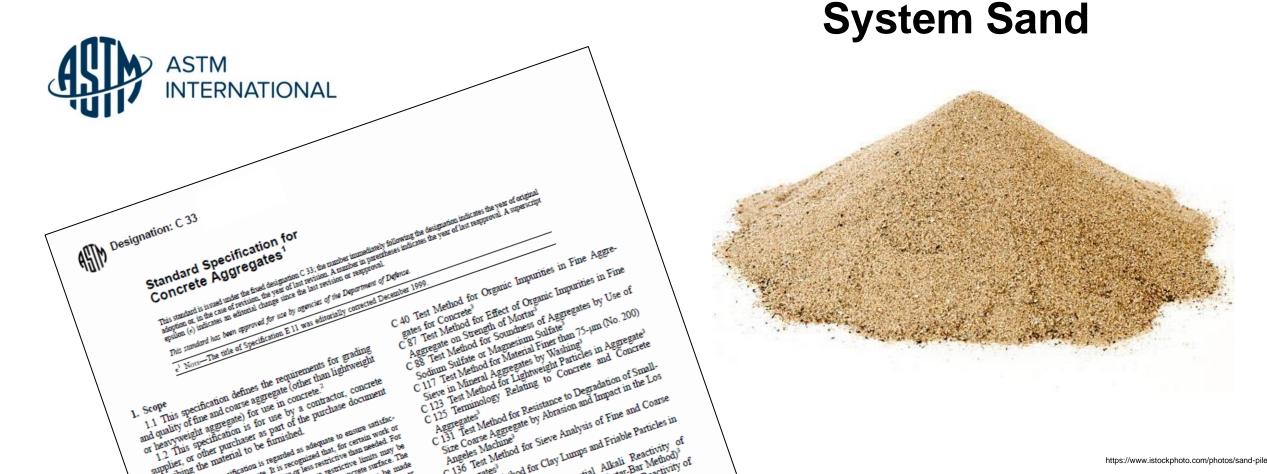
2021 Uniform Plumbing Code®

AN AMERICAN NATIONAL STANDARD | IAPMO/ANSI UPC 1 - 2021

мсаа

What's inside a field-installed combined treatment and dispersal system?

Integrated Technology


Manufactured CTD Product

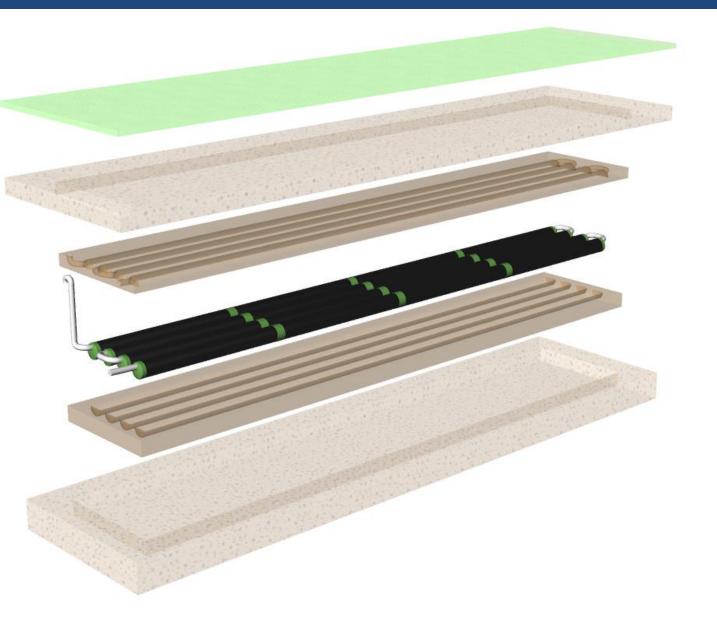
System Sand

System Sand Specification

ASTM C33 – Standard Specification for Concrete Aggregates

Typical Expanded View

Vegetative cover


Backfill soil

3-in system sand

Manufactured product

6-in system sand

Native soil

What are the basic steps for CTD system construction?

Sand Bed Placement

Product Segments Connection

Product Placement on Sand Bed

Carlos

Pra- make

System May Need to be Staked

Curved Bed Layout with Spacers

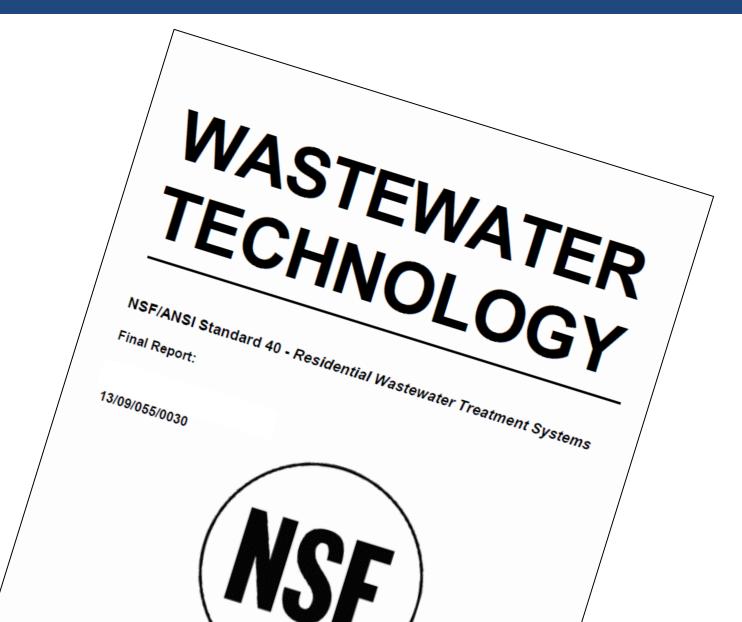
Piping Connected

System Sand Placement

Finished Above-Ground System

CTD Treatment Performance Typical Testing Results

What is Secondary Treatment?


EPA establishes secondary treatment standards for publicly owned treatment works (POTWs), which are minimum, technologybased requirements for municipal wastewater treatment plants. These standards are reflected in terms of five-day biochemical oxygen demand (BOD₅), total suspended solids (TSS) removal, and pH.

NSF/ANSI 40 Secondary Treatment Standards

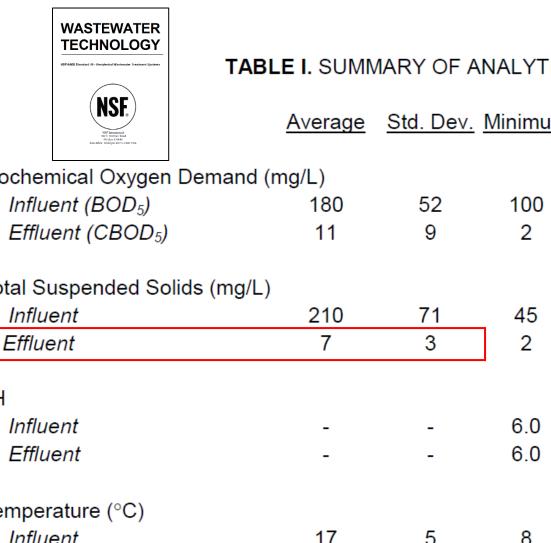
NSF/ANSI 40 Parameter	Requirement	NSF International Standard / American National Standard
5-day carbonaceous oxygen demand	<25 mg/l	NSF/ANSI 40 - 2020 Residential Wastewater Treatment Systems
Total suspended solids	<30 mg/l	
pH	6 to 9	

NOL.

NSF/ANSI 40 Certification and Testing

NSF/ANSI 40 Testing

- Consistently reduces CBOD₅ and TSS concentrations:
 - From day 1
 - Throughout 26-week test


TABLE I. SUMMARY OF ANALYTICAL RESULTS

Biochen		Demand (<u>Average</u>	<u>Std. Dev.</u>	<u>Minimum</u>	Maximum	<u>Median</u>	Interquartile <u>Range</u>	
Biochemical Oxygen Demand (r Influent (BOD ₅)		180	52	100	430	160	140 - 200		
	ent (CBOD $_5$)		11	9	2	50	8	6- 14	
Total Suspended Solids (mg/L)									
Influe	ent		210	71	45	650	190	170- 230	
Efflue	ent		7	3	2	18	6	5 -9	
рН									
Influe	ent		-	-	6.0	7.5	6.9	6.8 – 7.2	
Efflu	ent		-	-	6.0	7.4	6.5	6.3 - 6.7	
Temperature (°C)									
Influe	ent		17	5	8	23	19	13 – 21	
Efflu	ent		16	7	2	32	18	10 - 23	
Dissolved Oxygen (mg/L)									
Influe	ent		0.4	0.4	0.1	2.5	0.2	0.1 – 0.5	
Efflu	ent		3.5	1.7	1.0	8.5	3.4	2.0 - 4.4	

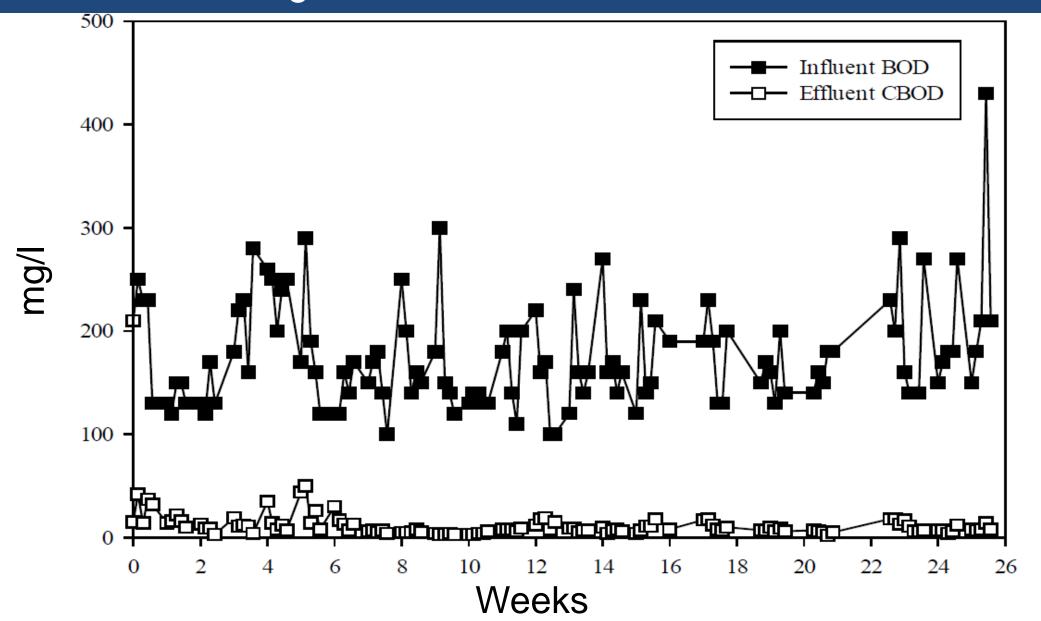
TABLE I. SUMMARY OF ANALYTICAL RESULTS

INSE NOT A DECEMBER IN THE DECEMBER IN THE DECEMBER IN THE DECEMBER IN THE DECEMBER IN THE DECEMBER IN THE DECEMBER INTERDECEMBER IN THE DECEMBER IN THE DECEMBER INTERDECEMBER IN THE DECEMBER IN THE DECEMBER IN THE DECEMBER IN THE DECEMBER INTERDECEMBER INTERDECEMBER IN THE DECEMBER IN	<u>Average</u>	<u>Std. Dev.</u>	<u>Minimum</u>	<u>Maximum</u>	<u>Median</u>	Interquartile <u>Range</u>				
Biochemical Oxygen Demand (mg/L)										
Influent (BOD ₅)	180	52	100	430	160	140 - 200				
Effluent (CBOD ₅)	11	9	2	50	8	<mark>6- 1</mark> 4				
Total Suspended Solids (mg/L)										
Influent	210	71	45	650	190	170-230				
Effluent	7	3	2	18	6	5 -9				
рН										
Influent	-	-	6.0	7.5	6.9	6.8 – 7.2				
Effluent	-	-	6.0	7.4	6.5	6.3 – 6.7				
Temperature (°C)										
Influent	17	5	8	23	19	13 – 21				
Effluent	16	7	2	32	18	10 - 23				
Dissolved Oxygen (mg/L)										
Influent	0.4	0.4	0.1	2.5	0.2	0.1 – 0.5				
Effluent	3.5	1.7	1.0	8.5	3.4	2.0 - 4.4				

TABLE I. SUMMARY OF ANALYTICAL RESULTS

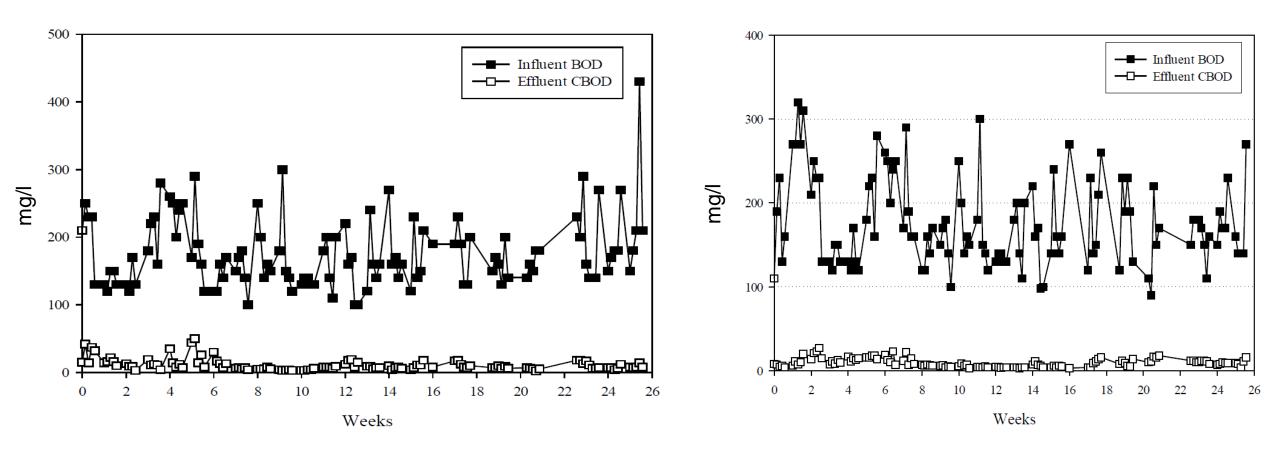

	Minimum Minimu		<u>Average</u>	<u>Std. Dev.</u>	<u>Minimum</u>	<u>Maximum</u>	<u>Median</u>	Interquartile <u>Range</u>		
Biochemical Oxygen Demand (mg/L)										
	ent (BOD ₅)		180	52	100	430	160	140 - 200		
Efflu	ent (CBOD ₅)		11	9	2	50	8	6- 14		
Total St	uspended So	lids (mg/L)								
Influ	ent		210	71	45	650	190	170- 230		
Efflue	ent		7	3	2	18	6	5 -9		
pН										
Influ	ent		-	-	6.0	7.5	6.9	6.8 – 7.2		
Efflu	ent		-	-	6.0	7.4	6.5	6.3 – 6.7		
Temper	ature (°C)									
Influ	ent		17	5	8	23	19	13 – 21		
Efflu	ent		16	7	2	32	18	10 - 23		
Dissolve	ed Oxygen (n	ng/L)								
Influ		-	0.4	0.4	0.1	2.5	0.2	0.1 – 0.5		
Efflu	ent		3.5	1.7	1.0	8.5	3.4	2.0 - 4.4		

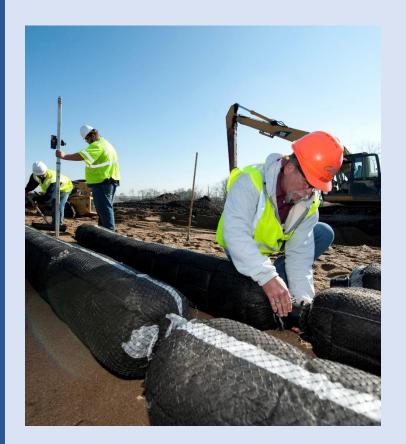
TABLE I. SUMMARY OF ANALYTICAL RESULTS


NSE NSE Difference Striker Str	<u>Average</u>	<u>Std. Dev.</u>	<u>Minimum</u>	<u>Maximum</u>	<u>Median</u>	Interquartile <u>Range</u>				
Biochemical Oxygen Demand (mg/L)										
Influent (BOD ₅)	180	52	100	430	160	140 - 200				
Effluent (CBOD ₅)	11	9	2	50	8	6- 14				
Total Suspended Soli	ds (mg/L)									
Influent	210	71	45	650	190	170- 230				
Effluent	7	3	2	18	6	5 -9				
рН										
Influent	-	-	6.0	7.5	6.9	6.8 – 7.2				
Effluent	-	-	6.0	7.4	6.5	6.3 – 6.7				
Temperature (°C)										
Influent	17	5	8	23	19	13 – 21				
Effluent	16	7	2	32	18	10 - 23				
Dissolved Oxygen (mg/L)										
Influent	0.4	0.4	0.1	2.5	0.2	0.1 – 0.5				
Effluent	3.5	1.7	1.0	8.5	3.4	2.0 - 4.4				

NSF/ANSI 40 Testing

- Fluctuating influent concentrations
- Consistent effluent concentrations


CBOD₅ Treatment Performance


CBOD₅ Treatment Comparison

Product A

Product B

NSF/ANSI 40 Testing

- No start-up period required
- Effectiveness is immediate

Table II. 7- and 30-day Average Effluent CBOD₅ and 30-day Average Influent BOD₅

Month	Week	7-day Average Effluent CBOD₅ (mg/L)	30-day Average Effluent CBOD₅ (mg/L)	30-day Average Influent BOD₅ (mg/L)	
	1	28			
	2	16	17	180	
1	3	8			
	4	4 11			
	5	15			
	6	28			
2	7	16	14	170	
	8	6			
	9	6			
	10	3	7		
3	11	4		160	
3	12	8	1	100	
	13	14			
	14	7			
4	15	7	9	170	
4	16	7	9	170	
	17	12			
	18	14		160	
	19	8	8		
5	20	8			
	21	6			
	22	4			
	23	16		200	
6	24	9	10		
6	25	7	10	200	
	26 9				

WASTEWATER TECHNOLOGY

NSF

NSF International 789 N. Disboro Road PO Box 130140 Ann Arbor, Michigan 48113-0140 USA Table II. 7- and 30-day Average Effluent CBOD₅ and 30-day Average Influent BOD₅

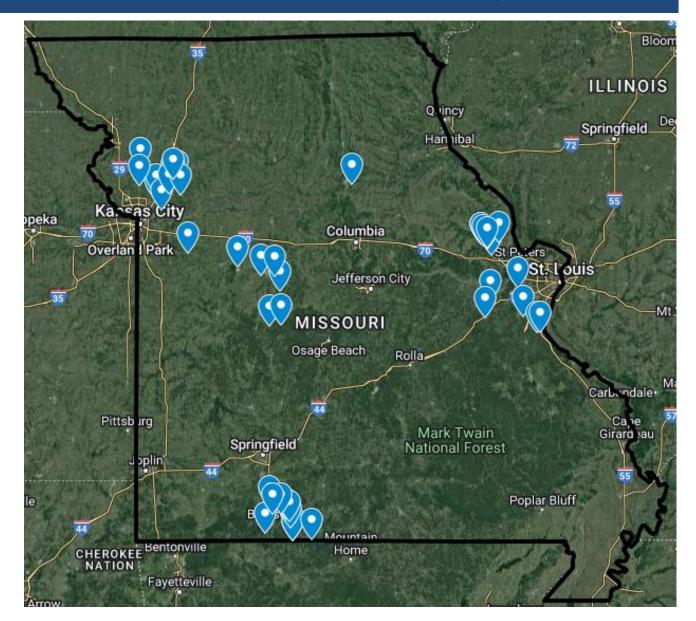
Month	Week	7-day Average Effluent CBOD₅ (mg/L)	30-day Average Effluent CBOD₅ (mg/L)	30-day Average Influent BOD₅ (mg/L)	
	1	28			
1	2	16	17	180	
1	3	8	17		
	4	11			
	5	15			
	6	28		170	
2	7	16	14		
	8	6			
	9	6			
	10	3			
3	11	4	7	160	
5	12	8	1		
	13	14			
	14	7			
A	15	7	0	170	
4	16	7	9	170	

WASTEWATER TECHNOLOGY

ISF/ANSI Standard 40 - Residential Wastewater Treatment System

NSF

NSF International 789 N. Disboro Road PO Box 130140 Ann Arbor, Michigan 48113-0140 USA Table II. 7- and 30-day Average Effluent CBOD₅ and 30-day Average Influent BOD₅


Month	Week	7-day Average Effluent CBOD₅ (mg/L)	30-day Average Effluent CBOD₅ (mg/L)	30-day Average Influent BOD₅ (mg/L)	
	1	28			
1	2	16	47	100	
1	3	8	17	180	
	4	11			
	5	15			
	6	28		170	
2	7	16	14		
	8	6			
	9	6			
	10	3		160	
3	11	4	7		
5	12	8			
	13	14			
	14	7			
4	15	7		170	
4	16	7	9	170	

Missouri Field Performance Study Results

- 30 Presby Advanced Enviro-Septic systems
- Installed principally on Missouri single-family homes
- Study required per Missouri Code of State Regulations
- Objective to assess hydraulic function
- 3- to 8-year-old installations

Three geographical areas:

- Kansas City
- St. Louis
- Branson/Table Rock Lake

- Third-party investigator was Dr. Randall J. Miles, Associate Professor Emeritus, University of Missouri
- Dr. Miles lectured on soil science and agronomy for >30 years
- A Missouri Department of Health and Senior Services representative participated in the field evaluations


- Two product approvals led to differing installations:
 - 2012 approval 50 to 70 ft pipe/bedroom; system sand footprint based upon variable soil loading rates; 6 inches of system sand below pipe
 - 2015 approval 50 ft pipe/bedroom; system sand footprint 90% of area required based on soil loading rate;
 6 inches of system sand below pipe
- Current product sizing is 70 ft/bedroom and 90% of area required based on soil loading rate (SLR)

Footprint Comparison

Missouri conventional gravel and pipe trench system

5 trenches 2-ft width 90-ft long 6-ft on-center In-ground 0.4 gpd/sf soil

26 ft 2,340 sf 90 ft

- Single non-intrusive, walkover visual assessment
- Assessment indicators:
 - Surfacing effluent
 - Shallow saturated soil in and around installation
 - Effluent odor and staining
- Topographical evaluation of surface flow toward installation
- Occupant interview on past system function

- DHSS requires less than 10% rate of failure
- Per DHHS approval "failure" defined as:

Failure to function properly so as to cause the discharge of untreated or partially treated wastewater onto the ground surface, or back up of effluent into the residence, due to a system design defect.

- 29 systems functioning properly
- 1 system deemed to be in a state of failure
 - Design SLR was 0.65 gpd/sf
 - Regional/area SLRs are typically 0.25 to 0.30 gpd/sf
 - System sand footprint may have been undersized
- DHSS issued general-use approval

Missouri Study - Lesson Learned

- Installation quality is critical to proper function
 - Side slopes must have correct thickness and taper
 - System sand must be adequately covered with fill
 - Surrounding topography can impact system hydraulics
 - Traffic across the system can impact effluent absorption
 - Upslope vehicle parking increases flow onto system

2022 – No Evidence of Breakout

AND INCOME.

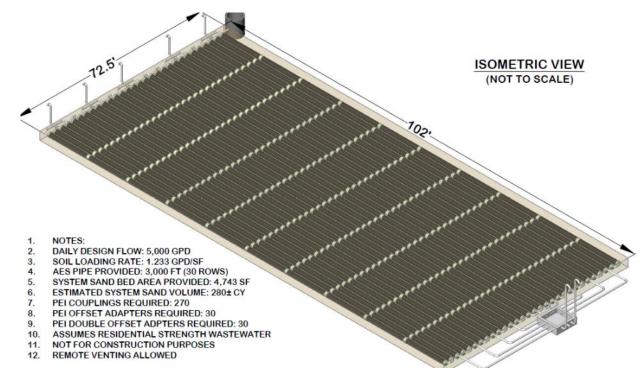
2019 – Improper Installation

2019 – Improper Installation

2019 – Repair Completes Installation

2022 – No Evidence of Breakout

Lessons Learned - Surface Flow Diversion

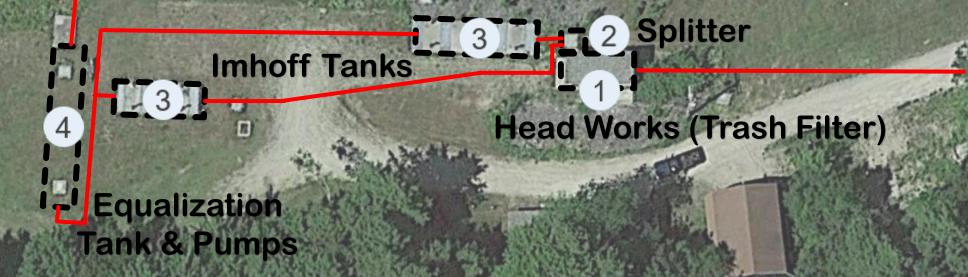

Lessons Learned - Surface Flow Diversion

Lessons Learned - Surface Flow Diversion

CTD System Case Studies

Berkshire East Ski Resort

- 9,900 Gallons Per Day
 - Two beds handling 5,000 GPD each
- Handling facility's domestic wastewater
- Designed to account for future development growth



Blodgett Landing, Newbury, NH 50,000 GPD

5 Four Multi-Level Pipe-Based Systems

Recirculation & Dispersal Pumps -

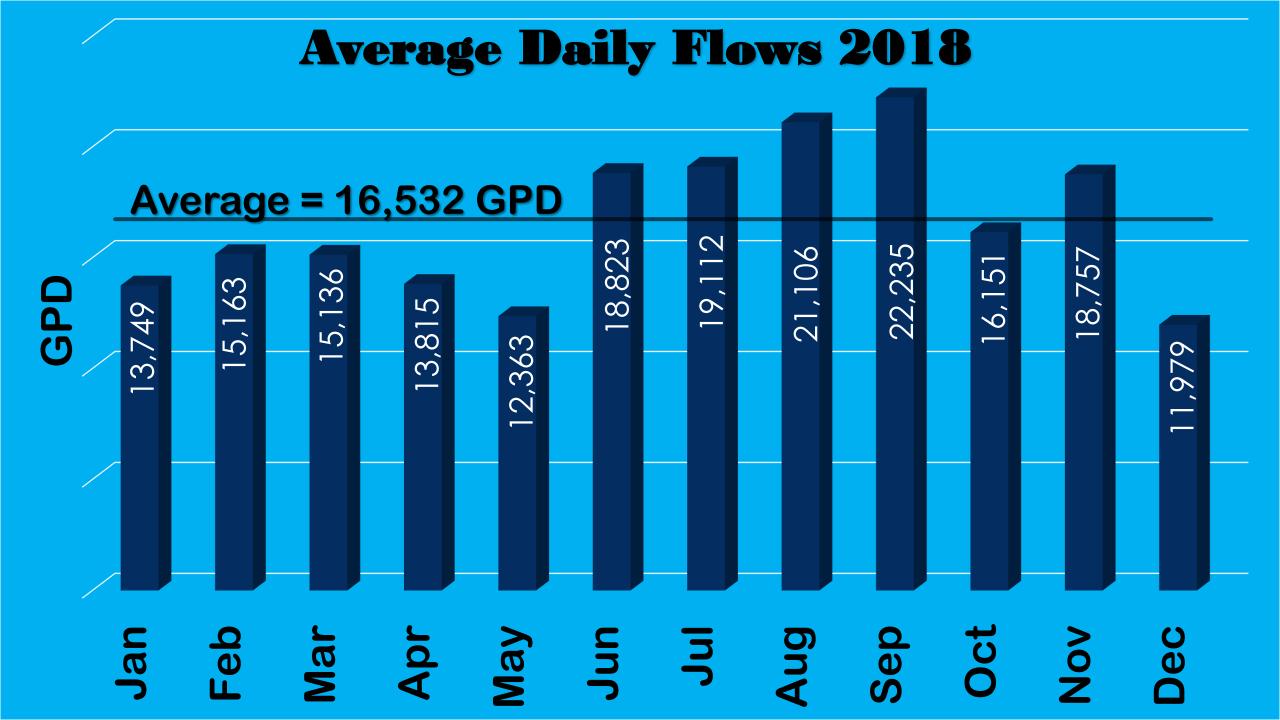
5 Four Multi-Level Pipe-Based Systems Gravity Dispersal Field

Recirculation Line

Imhoff Tanks 2 Splitter

Head Works (Trash Filter)

6


Equalization

Gravit

rsa

bel

Tank & Pumps

Analyte	Average	Units	Change	Analyte	Average	Units	Change
TSS - Influent	119.1	mg/L		Total Nitrogen - Influent	28.70	mg/L	70 597
TSS - Effluent	5.14	mg/L	-95.7%	Total Nitrogen - Effluent	7.89	mg/L	-72.5%
Nitrite - Influent	0.50	mg/L	1 007	Total Phosphorous - Influent	4.74	mg/L	10 107
Nitrite - Effluent	0.49	mg/L	-1.8%	Total Phosphorous - Effluent	1.78	mg/L	-62.4%
Nitrate- Influent	1.05	mg/L	575%	BOD5 - Influent	111.41	mg/L	0 <i>A E</i> 97
Nitrate - Effluent	7.09	mg/L	3/3/0	BOD5 - Effluent	6.13	mg/L	-94.5%
Ammonia - Influent	20.56	mg/L		Total Coliform - Influent	295,489,587	CFU/100 mL	
Ammonia - Effluent	0.46	mg/L	-97.8 %	Total Coliform - Effluent	7,931	CFU/100 mL	99.997%
TKN - Influent	27.85	mg/L	02 007	Fecal Coliform - Influent	11,917,611	CFU/100 mL	
TKN - Effluent	1.70	mg/L	-93.9 %	Fecal Coliform - Effluent	2,072	CFU/100 mL	99.983%

Analyte	Average	Units	Change	Analyte	Average	Units	Change
TSS - Influent	119.1	mg/L	-95.7%	Total Nitrogen - Influent	28.70	mg/L	-72.5 %
TSS - Effluent	5.14	mg/L		Total Nitrogen - Effluent	7.89	mg/L	
Nitrite - Influent	0.50	mg/L	-1.8 %	Total Phosphorous - Influent	4.74	mg/L	-62.4 %
Nitrite - Effluent	0.49	mg/L		Total Phosphorous - Effluent	1.78	mg/L	
Nitrate- Influent	1.05	mg/L	575 %	BOD5 - Influent	111.41	mg/L	-94.5 %
Nitrate - Effluent	7.09	mg/L		BOD5 - Effluent	6.13	mg/L	
Ammonia - Influent	20.56	mg/L	-97.8 %	Total Coliform - Influent	295,489,587	CFU/100 mL	99.997 %
Ammonia - Effluent	0.46	mg/L		Total Coliform - Effluent	7,931	CFU/100 mL	
TKN - Influent	27.85	mg/L	-93.9 %	Fecal Coliform - Influent	11,917,611	CFU/100 mL	99.983 %
TKN - Effluent	1.70	mg/L		Fecal Coliform - Effluent	2,072	CFU/100 mL	

Paradise, CA 100,000 GPD

Louisiàna

Minnesota

Illinois Indiana Ohio Appala West Virginia

buri Tennessee South Carolina

Mississipp Alabama Georgia

AN ALL STAR STAR

North Dakota

Nebraska

Kansas

Oklahoma

Saint-Pierre

Berm

New Brunswick

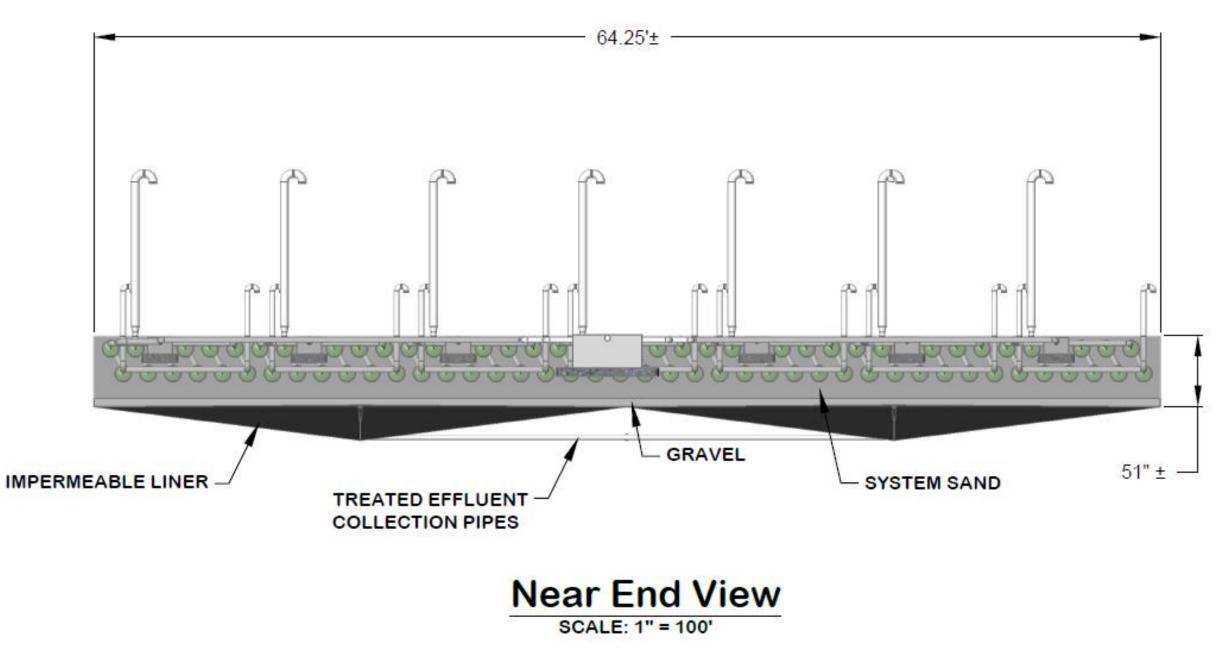
Ottawa

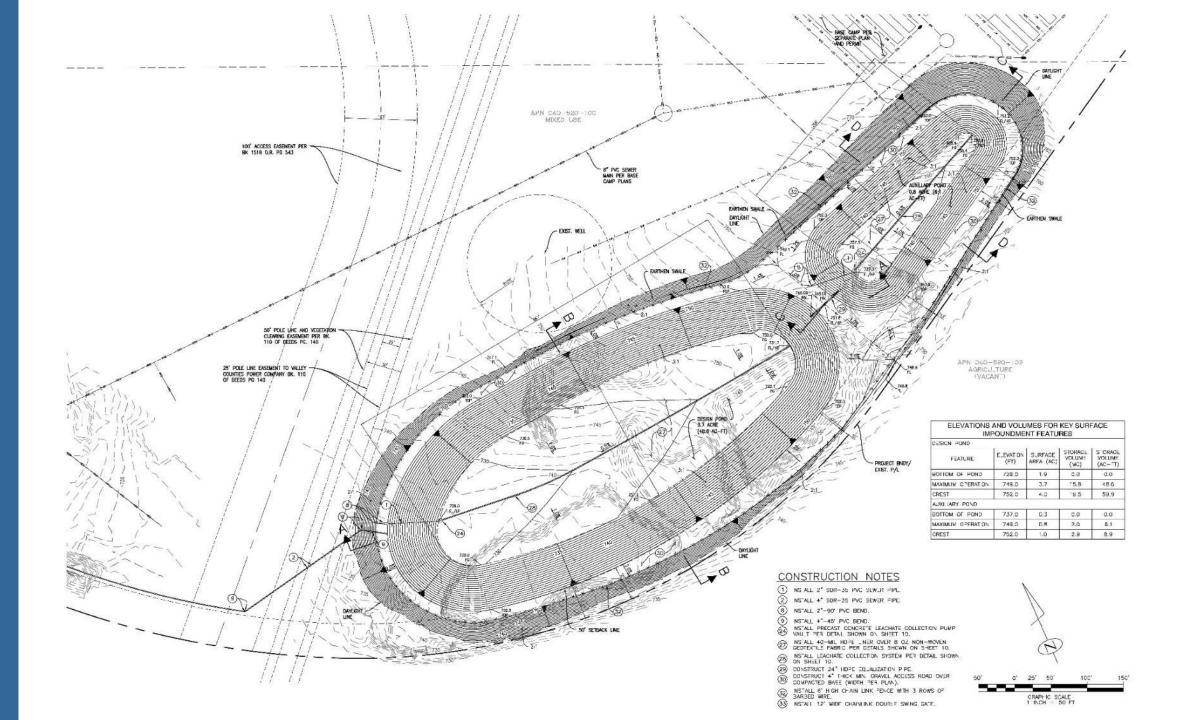
Vermon

noton

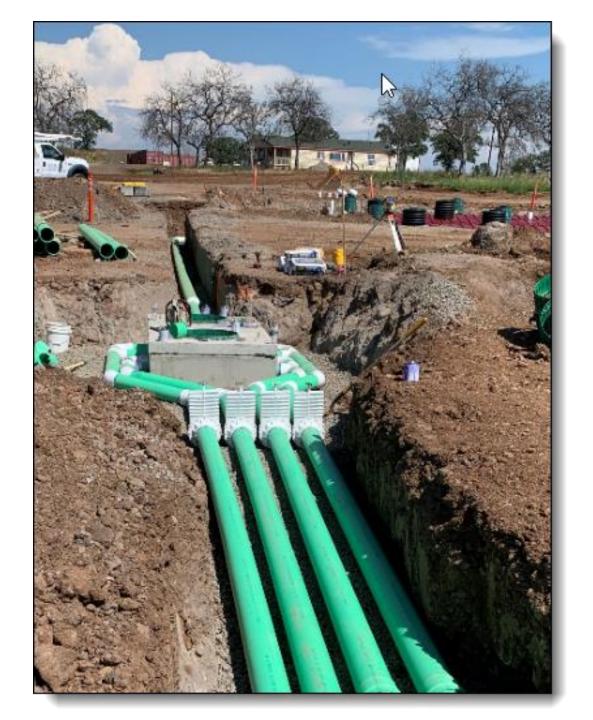
California 100,000 gpd FEMA Installation

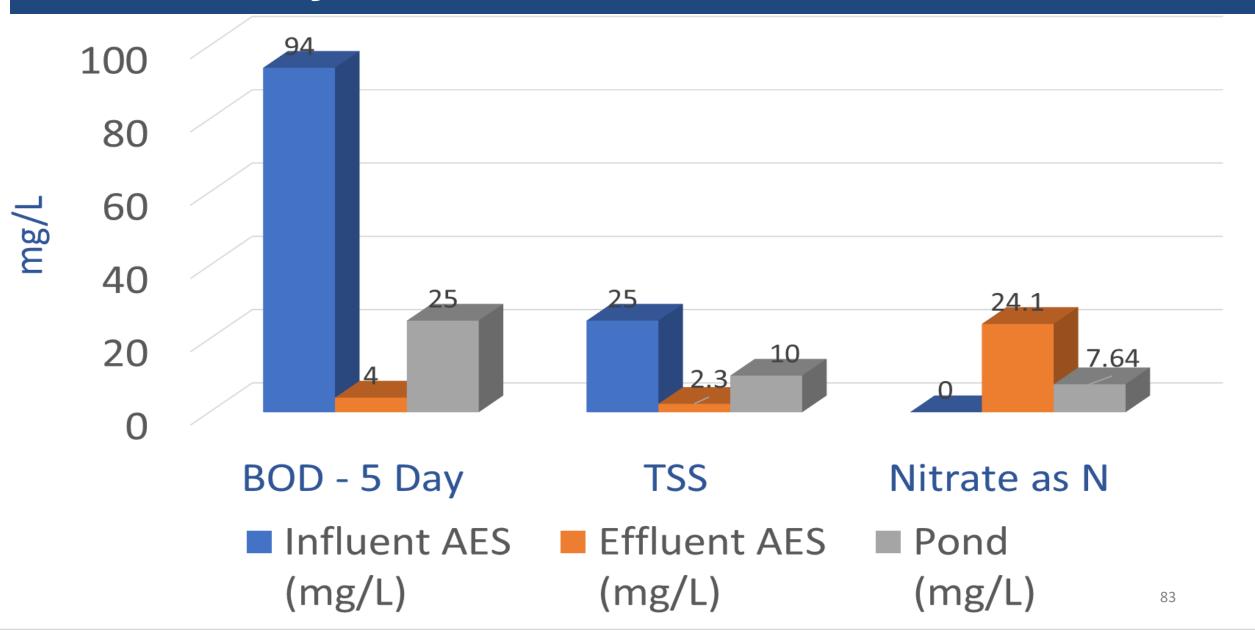
- FEMA worker base camp
- Over 1,500 workers
- Kitchens and laundry facilities
- Largest CTD system to date
- 100,000 gallons per day
- Adapted for nutrient reduction


FEMA Base Camp


Paradise, CA 100,000 GPD

(4) 40k Septic Tanks


Large spinds



System Performance Data

Thank You for Attending!

CTD Technology Summary

- Promotes wastewater reclamation
- Reduces energy demand
- Performs reliably and consistently
- Proven longevity
- Functions in all climates
- Smaller footprint vs. legacy systems

Presented by David Lentz, P.E. dlentz@infiltratorwater.com

www.infiltratorwater.com