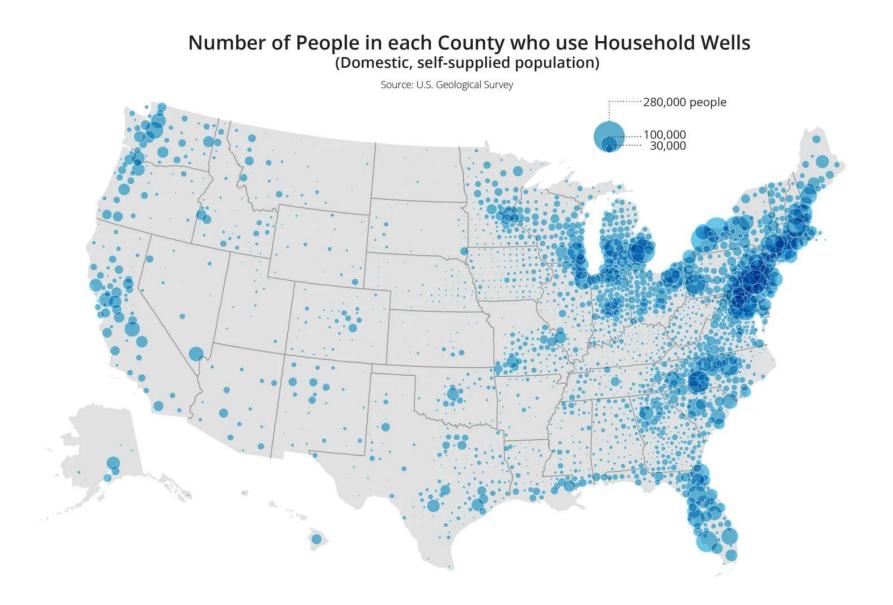
Low Pressure Pipe System Design and Construction

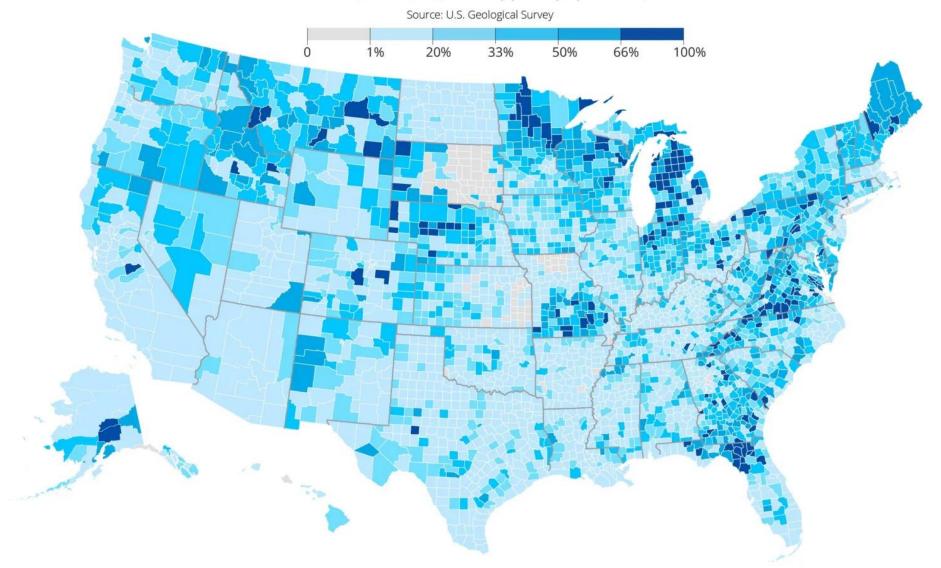
Tall Guy Waste Water Solutions & Soils, LLC Chris Nothstine, PE

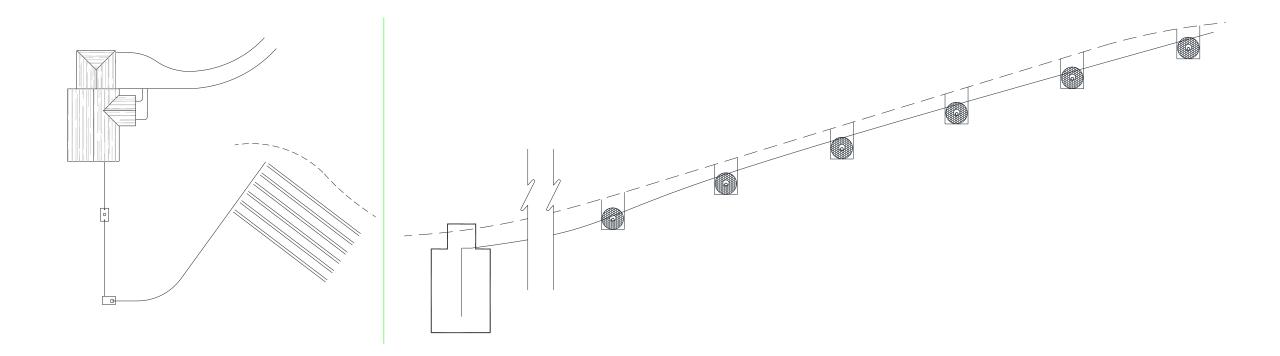
The materials being presented today represent MY opinions, based on MY experiences and do NOT necessarily reflect the opinions of NOWRA.


Loose and party decayed organic matter A horizon Mineral matter mixed with some humus E horizon Light colored mineral particles. Zone of eluviation and leaching B horizon Accumulation of clay transported from above C horizon Partially altered parent material Unweathered parent material

Soil morphology

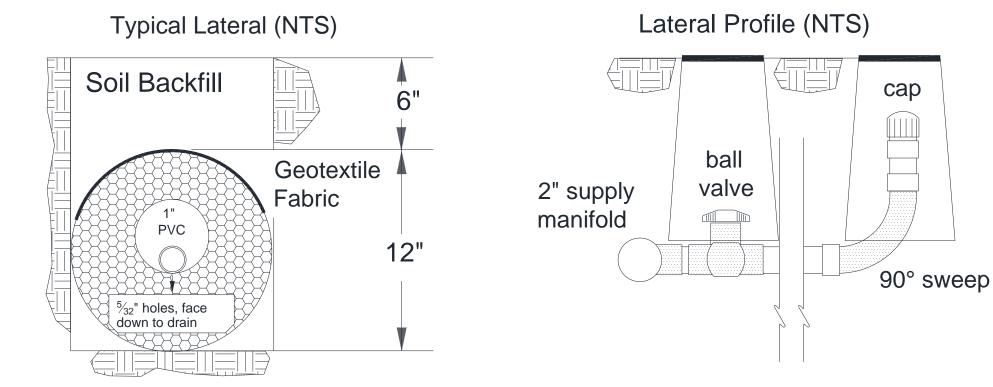
Soil morphology is the field of observable attributes of the soil within the various soil horizons and the description of the kind and arrangement of the horizons. The observable attributes ordinarily described in the field include the composition (texture), soil structure and organization of the soil, color of the base soil and features such as mottling, distribution of roots and pores, evidence of translocated materials such as carbonates, iron, manganese, carbon and clay, and the consistence of the soil.

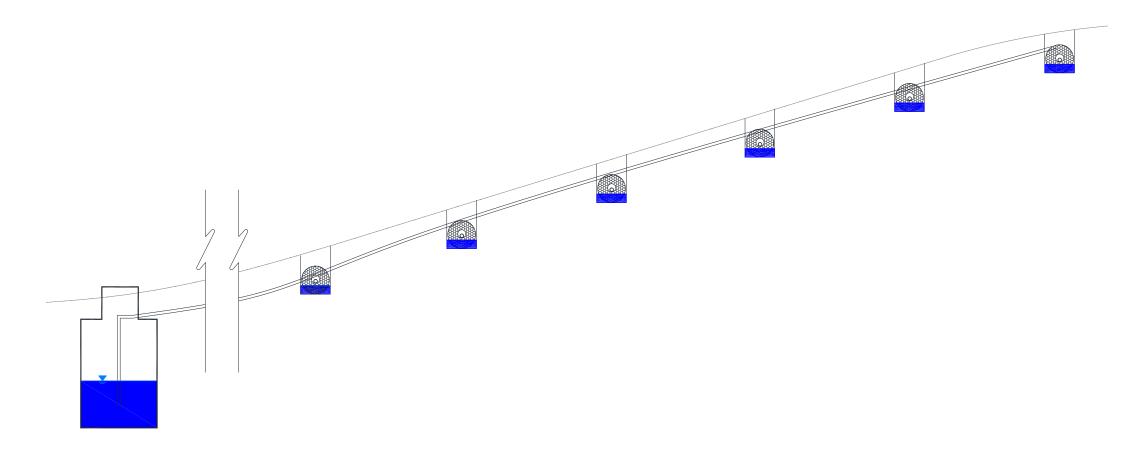

Dusite Wastewater Treatment DHSS Home * Healthy Living * Environmental Factors * onsite Onsite Wastewater Treatment Systems Negistration & Licensure Forms Onsite Wastewater Treatment Systems Information for Professionals Calendar of Events Onsite Wastewater Complaints Cell Tracking Information * NEW* Departion and Maintenance Guidelines ? Mestimated 25 percent of homes in Missouri rely on an onsite wastewater reatment system (OWTS) in areas where public severs are not available). Construction Permit Process and and prevent contamination of surface and groundwater. Factors that affect the proper functioning property, onsite systems prevent human contact with severage, and prevent contamination of surface and groundwater. Factors that affect the proper functioning or onsites systems include the site and soil conditions, designing and prevent on the Hand Senior Services (DHSS) has set minimum state standards for OWTS. These standards cover new systems and major changes to existing systems. Some examples of major changes are replacing a sewage tank, and replacing or expanding	Missouri Depar DHSS Breakter & Health are leady service	**************************************	vices	Governor Parson	Find an Agency	Online Services Se	earch G Select Langua
DHSS Home » Healthy Living » Environmental Factors » onsite Environmental Factors • Onsite Wastewater Treatment Systems • Related Links • Information for Professionals • Aleated Links • Calendar of Events • DHSS Construction Permit Process and Application • Organtion and Maintenance Guidelines Image Systems request professionals or professionals or sets wastewater and disperse it on the property where it is generated. When functioning properly, onsite systems prevent human contact with sewage, and prevent contamination of surface and groundwater. Factors that affect the proper functioning of onsite systems include the site and soil conditions, design, installation, operation, and maintenance. OHSS has set minimum state standards for OWTS. These standards cover new systems and major changes to existing systems. Some examples of major changes are replacing a sewage tank, and replacing or expanding Maintenance or expanding	Healthy Living	Senior & Disability Service	es Licensing &	Regulations	Disaster &	Emergency Planning	Data & Statisti
 Onsite Wastewater Treatment Systems Registration & Licensure Forms Information for Professionals Calendar of Events Consite Wastewater Complaints CeU Tracking Information *NEW* Operation and Maintenance Guidelines An estimated 25 percent of homes in Missouri rely on an onsite wastewater treatment system (OWTS) in areas where public severs are not available. Onsite Wastewater and disperse it on the property where it is generated. When functioning properly, onsite systems prevent human contact with sewage, and prevent contamination of surface and groundwater. Factors that affect the proper functioning of onsite systems prevent human contact with sewage, and prevent contamination of surface and groundwater. Factors that affect the proper functioning of onsite systems include the site and soil conditions, design, installation, operation, and maintenance. The Missouri Department of Health and Senior Services (DHSS) has set minimum state standards for OWTs. These standards cover new systems and major changes to existing systems. Some examples of major changes are replacing a sewage tank, and replacing or expanding 	Onsite Waster	water Treatment				Healthy Living	
 Registration & Licensure Forms Related Links Laws, Regulations & Manuals Calendar of Events Laws, Regulations & Manuals Frequently Asked Questions DHSS Construction Permit Process and Application Corration and Maintenance Guidelines IM Issouri rely on an onsite wastewater treatment system (OWTS) in areas where public sewers are not available. Onsite systems treat wastewater and disperse it on the property where it is generated. When functioning properly, onsite systems prevent human contact with sewage, and prevent contamination of surface and groundwater. Factors that affect the proper functioning of onsite systems include the site and soil conditions, design, installation, operation, and maintenance. The Missouri Department of Health and Senior Services (DHSS) has set minimum state standards for OWTS. These standards cover new systems and major changes are replacing a sewage tank, and replacing or expanding Chronic Diseases Cheat Public Diseases Cheat Pu	DHSS Home » Healthy L	iving » Environmental Factors	» onsite			Environmental Factors	
 Reduct at the Related Links Information for Professionals Laws, Regulations & Manuals Calendar of Events Insteaded Links Laws, Regulations & Manuals Crequently Asked Questions DHSS Construction Permit Process and Application Operation and Maintenance Guidelines Application CEU Tracking Information *NEW* DHSS Construction Permit Process and Application Operation and Maintenance Guidelines Application An estimated 25 percent of homes in Missouri rely on an onsite wastewater treatment system (OWTS) in areas where public sewers are not available. Onsite systems treat wastewater and disperse it on the property where it is generated. When functioning properly, onsite systems prevent human contact with sewage, and prevent contamination of surface and groundwater. Factors that affect the proper functioning of onsite systems include the site and soil conditions, design, installation, operation, and maintenance. The Missouri Department of Health and Senior Services (DHSS) has set minimum state standards for OWTS. These standards cover new systems and major changes to existing systems. Some examples of major changes are replacing a sewage tank, and replacing or expanding 				ourses		Chronic Diseases	
 Onsite Wastewater Complaints DHSS Construction Permit Process and Application CEU Tracking Information *NEW* Departion and Maintenance Guidelines An estimated 25 percent of homes in Missouri rely on an onsite wastewater treatment system (OWTS) in areas where public sewers are not available. Onsite systems treat wastewater and disperse it on the property where it is generated. When functioning properly, onsite systems prevent human contact with sewage, and prevent contamination of surface and groundwater. Factors that affect the proper functioning of onsite systems include the site and soil conditions, design, installation, operation, and maintenance. The Missouri Department of Health and Senior Services (DHSS) has set minimum state standards for OWTS. These standards cover new systems and major changes to existing systems. Some examples of major changes are replacing a sewage tank, and replacing or expanding Healthy Families Organ/Tissue Donation and Registry Women, Infants & Children (WIC) Genetic Disease & Early Childhood Food Programs Wellness & Prevention Local Public Health Agencies Immunizations 	 Information for Profes 	sionals •					
Operation and Maintenance Guidelines Image: Construction of the property of the property where it is generated. An estimated 25 percent of homes in Missouri rely on an onsite wastewater treatment system (OWTS) in areas where public sewers are not available. Onsite systems treat wastewater and disperse it on the property where it is generated. Image: Construction of the property where it is generated. When functioning properly, onsite systems prevent human contact with sewage, and prevent contamination of surface and groundwater. Factors that affect the proper functioning of onsite systems include the site and soil conditions, design, installation, operation, and maintenance. Image: Construction of the property of the propery	• Onsite Wastewater Co	• mplaints	DHSS Construction Pe			Healthy Families	
An estimated 25 percent of homes in Missouri rely on an onsite wastewater treatment system (OWTS) in areas where public sewers are not available. Onsite systems treat wastewater and disperse it on the property where it is generated. When functioning properly, onsite systems prevent human contact with sewage, and prevent contamination of surface and groundwater. Factors that affect the proper functioning of onsite systems include the site and soil conditions, design, installation, operation, and maintenance. The Missouri Department of Health and Senior Services (DHSS) has set minimum state standards for OWTS. These standards cover new systems and major changes to existing systems. Some examples of major changes are replacing a sewage tank, and replacing or expanding	Operation and Maintena	nce Guidelines 🖄				Organ/Tissue Donation	n and Registry
treatment system (OWTS) in areas where public sewers are not available. Onsite systems treat wastewater and disperse it on the property where it is generated. When functioning properly, onsite systems prevent human contact with sewage, and prevent contamination of surface and groundwater. Factors that affect the proper functioning of onsite systems include the site and soil conditions, design, installation, operation, and maintenance. The Missouri Department of Health and Senior Services (DHSS) has set minimum state standards for OWTS. These standards cover new systems and major changes to existing systems. Some examples of major changes are replacing a sewage tank, and replacing or expanding				Women, Infants & Chil	dren (WIC)		
systems treat wastewater and disperse it on the property where it is generated. When functioning properly, onsite systems prevent human contact with sewage, and prevent contamination of surface and groundwater. Factors that affect the proper functioning of onsite systems include the site and soil conditions, design, installation, operation, and maintenance. The Missouri Department of Health and Senior Services (DHSS) has set minimum state standards for OWTS. These standards cover new systems and major changes to existing systems. Some examples of major changes are replacing a sewage tank, and replacing or expanding Immunizations		-	not available. Onsite) s	epticsmart y			
when functioning property, onsite systems prevent human contact with sewage, Food Programs and prevent contamination of surface and groundwater. Factors that affect the weight for the site and soil conditions, design, installation, operation, and maintenance. weight for owners, state standards for OWTS. These standards cover new systems and major changes to existing systems. Some examples of major changes are replacing a sewage tank, and replacing or expanding Local Public Health Agencies	·		ere it is generated.	TOTA M		Genetic Disease & Early	y Childhood
and prevent containmation of surface and groundwater. Pactors that affect the proper functioning of onsite systems include the site and soil conditions, design, installation, operation, and maintenance. The Missouri Department of Health and Senior Services (DHSS) has set minimum state standards for OWTS. These standards cover new systems and major changes to existing systems. Some examples of major changes are replacing a sewage tank, and replacing or expanding	· · · · ·		•			Food Programs	
installation, operation, and maintenance. The Missouri Department of Health and Senior Services (DHSS) has set minimum state standards for OWTS. These standards cover new systems and major changes to existing systems. Some examples of major changes are replacing a sewage tank, and replacing or expanding Immunizations		•					
state standards for OWTS. These standards cover new systems and major changes to existing systems. Some examples of major changes are replacing a sewage tank, and replacing or expanding Immunizations		-	,,,	33MW	- strat	Wellness & Prevention	
state standards for OWTS. These standards cover new systems and major changes to existing systems. Some examples of major changes are replacing a sewage tank, and replacing or expanding Immunizations	The Missouri Department o	f Health and Senior Services (DHS	S) has set minimum	.epa.gov/se	price	Local Public Health Age	encies
		-	-			5	
an absorption field. These standards became effective in January 1996.				ank, and replacing o	r expanding	Immunizations	


from circle of blue WaterNews, October 1, 2018

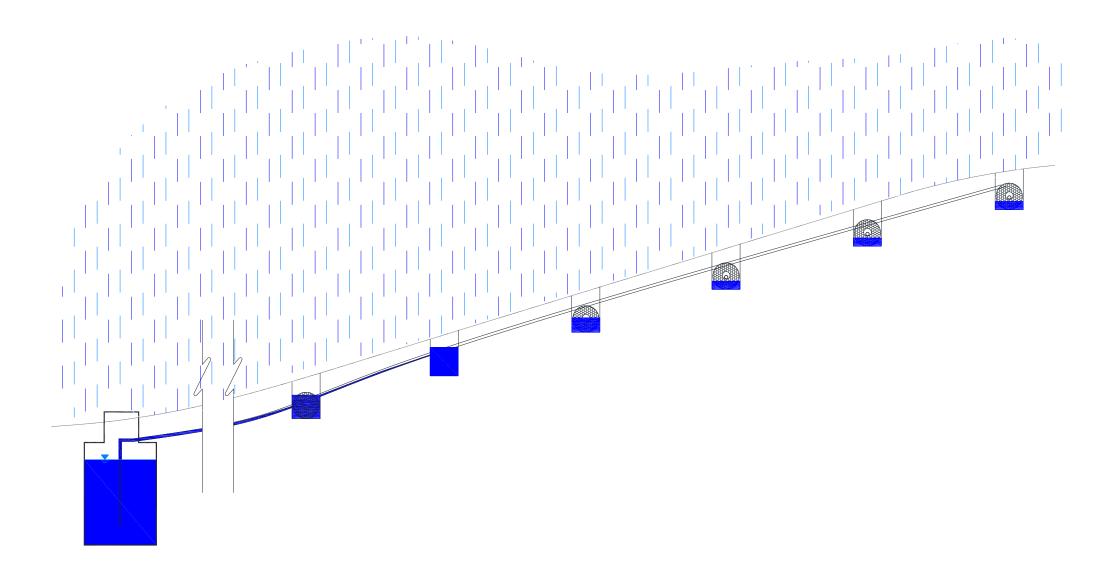
from circle of blue WaterNews, October 1, 2018

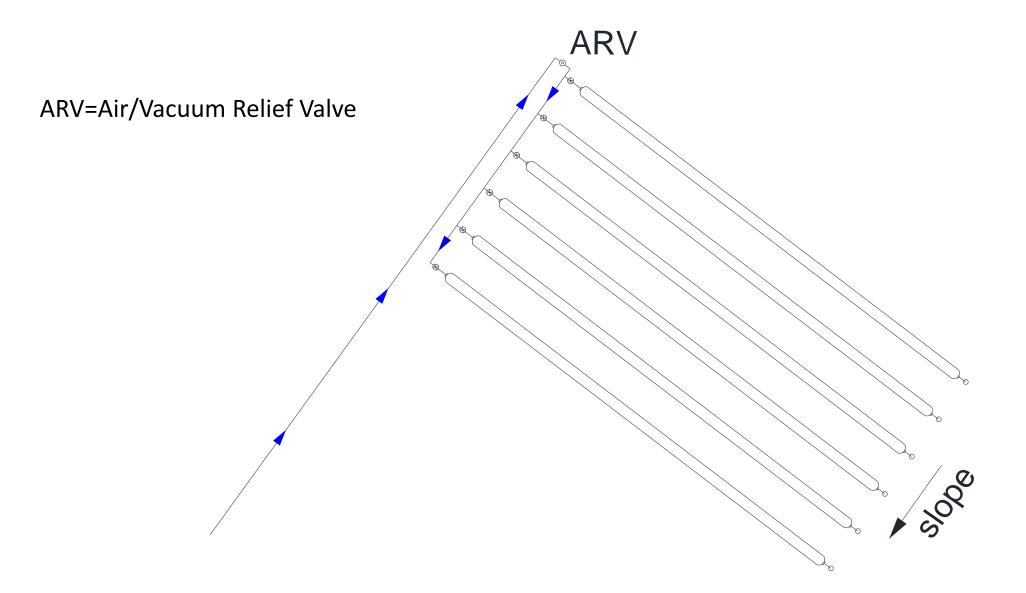
Percentage of People in each County who use Household Wells (Domestic, self-supplied population)

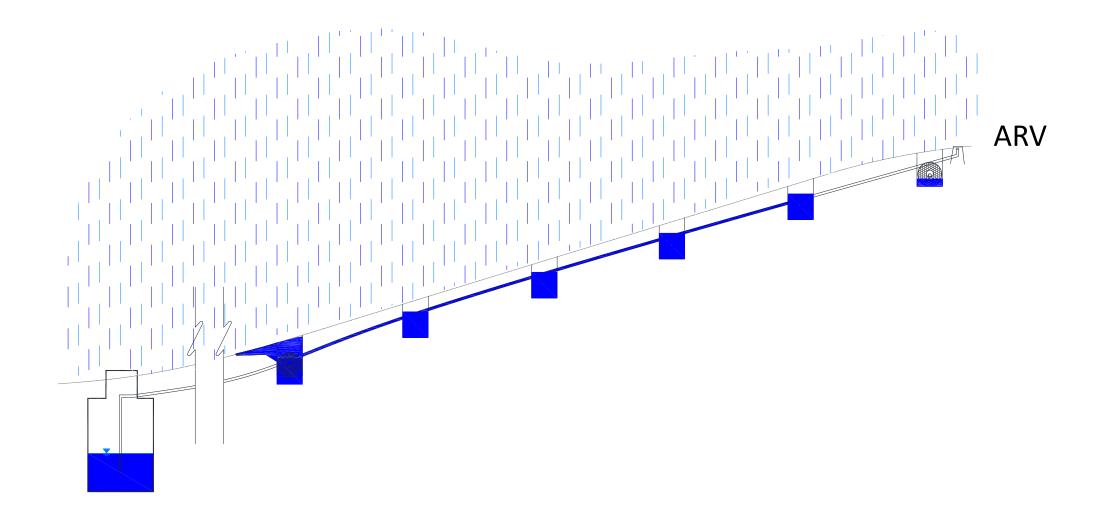



Plan View

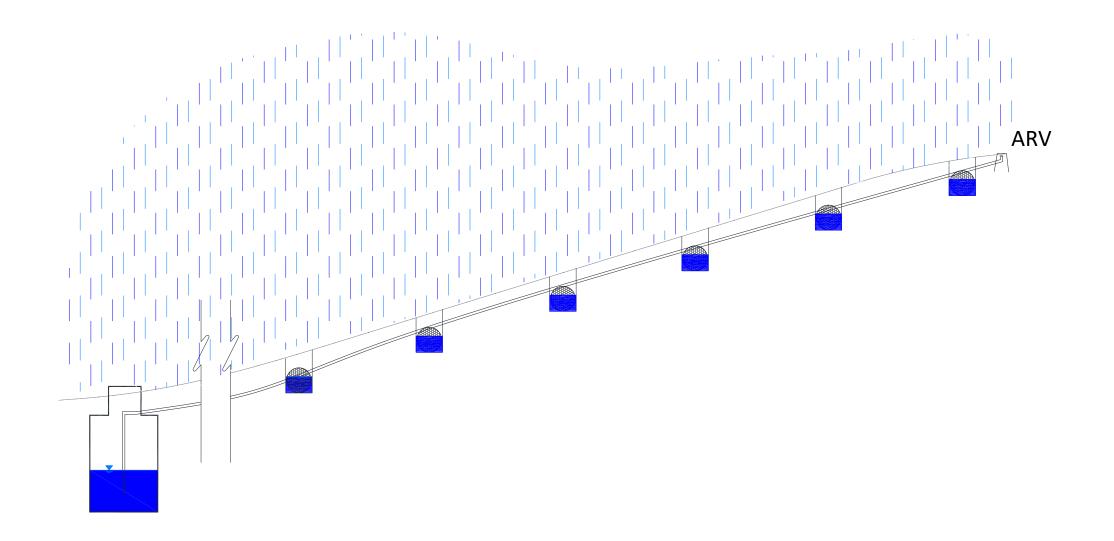
Profile of tank and laterals




\$/00 900



Traditional Layout



ARV

2000

ARV=Air/Vacuum Relief Valve

SIZING INFORMATION

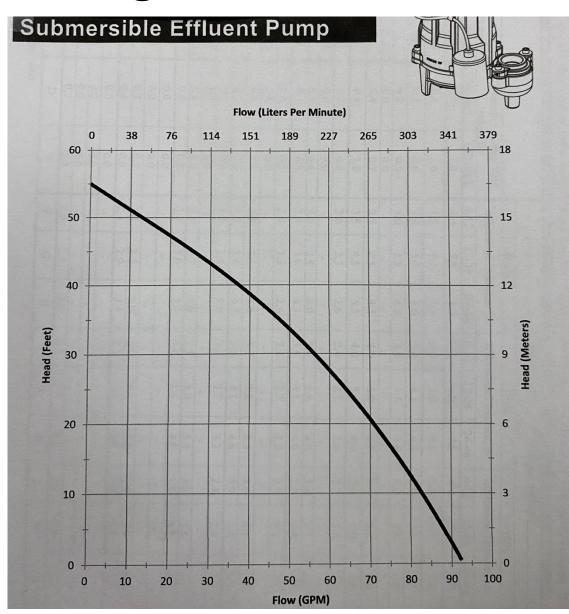
Pressure (ft)	Orifice Diameter (in)							
	1/8	5/32	3/16	1/4				
2.5	NP	NP	0.66	1.17				
3	NP	NP	0.72	1.28				
3.5	NP	0.54	0.78	1.38				
4	NP	0.58	0.83	1.47				
4.5	NP	0.61	0.88	1.56				
5	0.41	0.64	0.93	1.65				
5.5	0.43	0.68	0.97	1.73				
6	0.45	0.71	1.02	1.80				
6.5	0.47	0.73	1.06	1.88				
7	0.49	0.76	1.10	1.95				
7.5	0.50	0.79	1.14	2.02				
8	0.52	0.81	1.17	2.08				
8.5	0.54	0.84	1.21	2.15				
9	0.55	0.86	1.24	2.21				
9.5	0.57	0.89	1.28	2.27				

Inches x (Pressure in Feet)^{1/2}. NP means Not Permitted.

Source: Pressure Distribution Network Design by James C. Converse, January 2000.

Prepared for you by10/19/2022Pump Selection for Pressurized System

Orifice Size	0.156	inches	
Residual Head at Last Orifice	4.00	feet	
Lateral Length	60	feet	
Total Number of Laterals per Cell	6		
Orifice Spacing	5.00	feet	
Distributing Valve Model (# of Zones)	1		None used
Lift to Manifold	13	feet	
Discharge Assembly Size	1.50	inches	
Transport Line Size	1.50	inches	
Pipe Class/Schedule	40		
Transport Length	130	feet	
Manifold Size	2.00	inches	
Pipe Class/Schedule	40		
Length of Distribution Header	5.00	feet	
Lateral Size	1.25	inches	
Pipe Class/Schedule	40		
Flow Meter	none		None used
'Add-on' Friction Losses	5.00	feet	


Calculation

Minimum Flow Rate per Orifice Number of Orifices per Zone	0.60 gpm 72
Total Actual Flow Rate	43.6 gpm
Number of Laterals per Zone	6
Total Dynamic Head:	
Lift to Manifold	13.0 feet
Residual Head at Last Orifice	4.0 feet
Frictional Head Losses:	
Head Loss in Transport Pipe	13.7 feet
ad Loss through Discharge Assembly	5.7 feet
Head Loss in Distribution Header	0.0 feet
Head Loss in Laterals	0.2 feet
'Add-on' Friction Losses	5.0 feet
Head Loss through Distributing Valve	0.0 feet None Used
Head Loss through Flow Meter	0.0 feet None Used
Size Pump for:	
TOTAL FLOW RATE	43.6 gpm

TOTAL FLOW RATE 43.6 gpm @ TOTAL DYNAMIC HEAD 41.7 feet

Output

Input

Prepared for you by10/19/2022Pump Selection for Pressurized System

Orifice Size	0.156	inches	
Residual Head at Last Orifice	4.00	feet	
Lateral Length	60	feet	
Total Number of Laterals per Cell	6		
Orifice Spacing	5.00	feet	
Distributing Valve Model (# of Zones)	1		None
Lift to Manifold	13	feet	
Discharge Assembly Size	1.50	inches	
Transport Line Size	2.00	inches	
Pipe Class/Schedule	40		
Transport Length	130	feet	
Manifold Size	2.00	inches	
Pipe Class/Schedule	40		
Length of Distribution Header	5.00	feet	
Lateral Size	1.25	inches	
Pipe Class/Schedule	40		
Flow Meter	none		None
'Add-on' Friction Losses	5.00	feet	

used

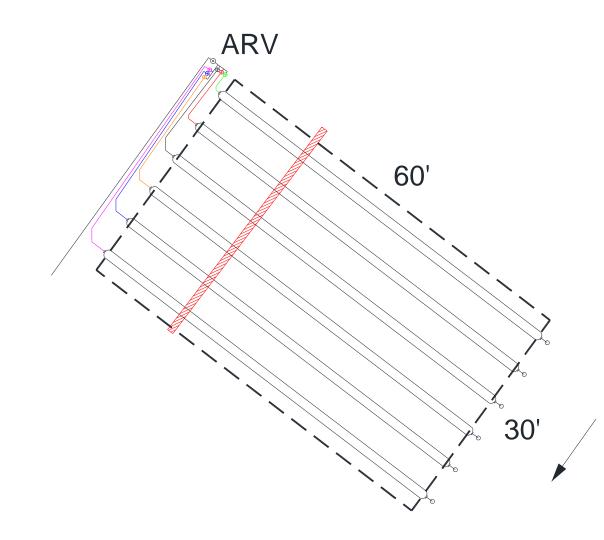
used

Calculation

Minimum Flow Rate per Orifice	0.60 gpm	
Number of Orifices per Zone	72	
Total Actual Flow Rate	43.6 gpm	
Number of Laterals per Zone	6	
Total Dynamic Head:		
Lift to Manifold	13.0 feet	
Residual Head at Last Orifice	4.0 feet	
Frictional Head Losses:		
Head Loss in Transport Pipe	4.1 feet	
ad Loss through Discharge Assembly	5.7 feet	
Head Loss in Distribution Header	0.0 feet	
Head Loss in Laterals	0.2 feet	
'Add-on' Friction Losses	5.0 feet	
Head Loss through Distributing Valve	0.0 feet	None Used
Head Loss through Flow Meter	0.0 feet	None Used
Size Pump for:		
TOTAL FLOW RATE	43.6 gpm	
TOTAL DYNAMIC HEAD	32.0 feet	

When designing low-pressure pipe systems, we need to consider Linear Loading Rate.

LLR – Amount of wastewater applied daily along the landscape contour. It is expressed in gallons per day per lineal foot along the contour.

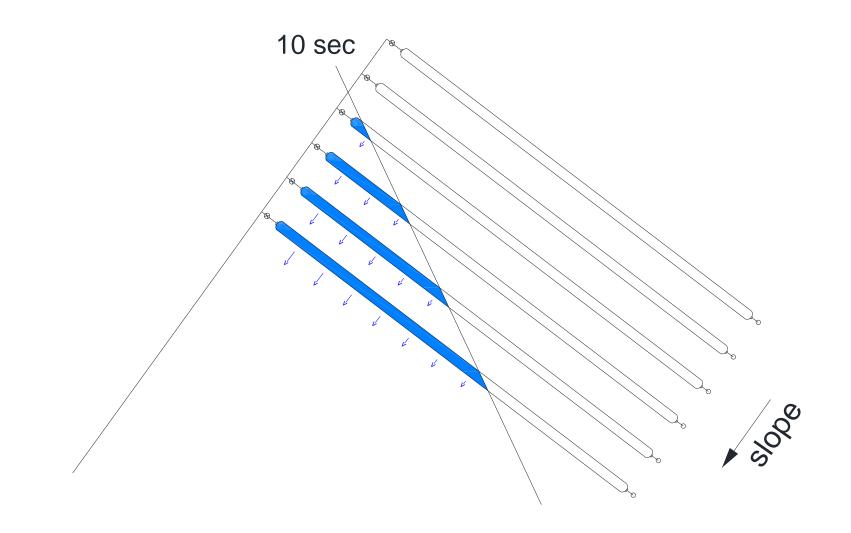

J.C. Converse, 1998

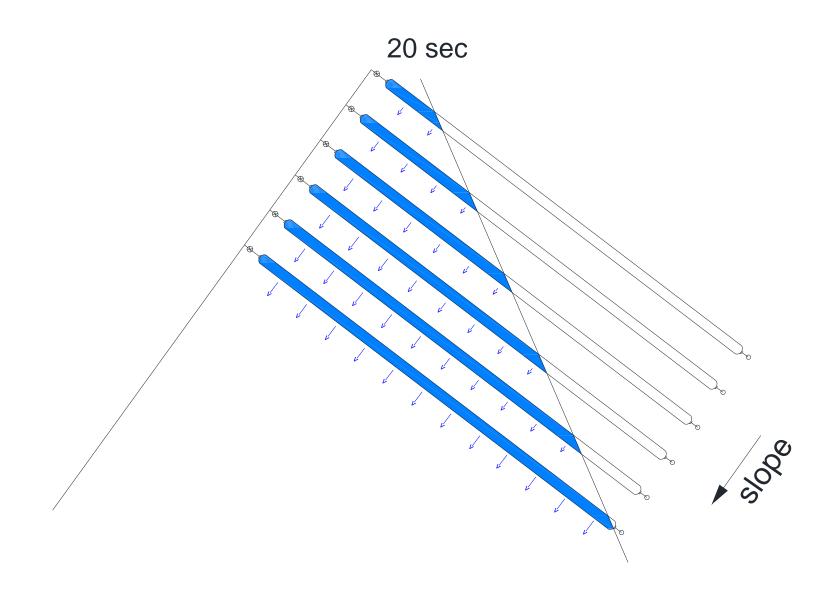
Depth of Class III soil	Maximum recommended
(inches)	LLR
18-24	4 gpd/LF
12-18	3 gpd/LF
6-12	1 gpd/LF

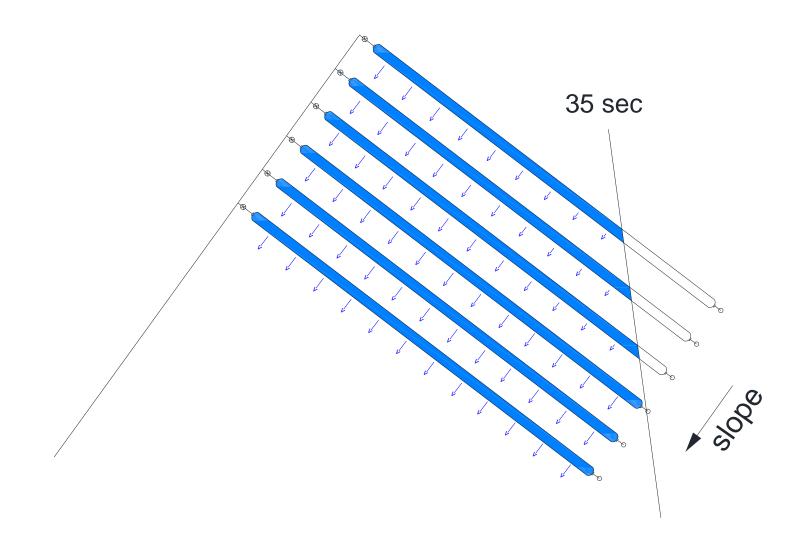
J.C. Converse

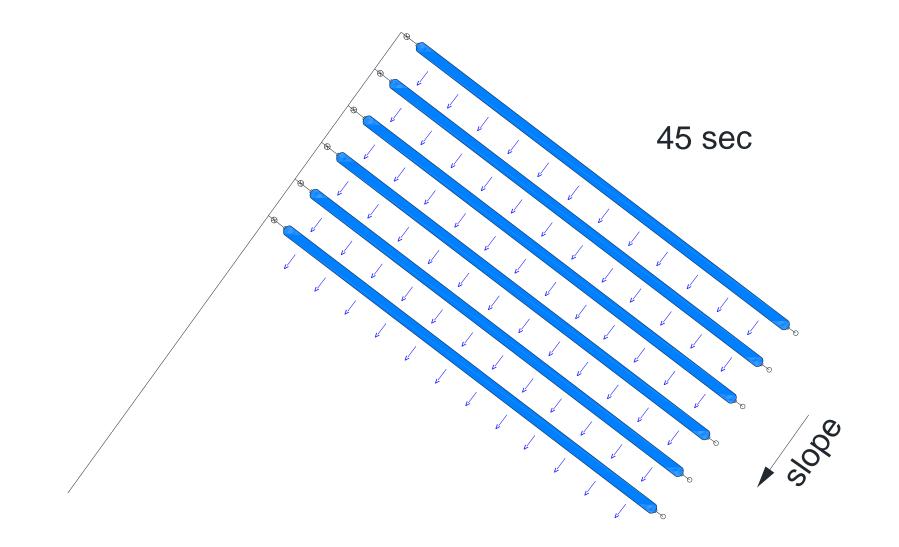
					1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	San Star	H	Ivdraulic		pading Rat	te. gal/da	a/ft		
						0.40/			5-9%	ope		>10%		
Ge'l Charge			Infiltration I	oading Rate,	Sector Sector	0-4%			Succession of the second					
Soil Charac	Strue	eture	gal/c	h_{a/ft^2}	Infiltra	Infiltration Distance, in.		Infiltr	Infiltration Distance, in.		Infiltration Distance, in.			
Texture	Shape	Grade	>30 mg/L	<30 mg/L	8-12	12-24	24-48	8-12	12-24	24-48	8-12	12-24	24-48	Row
COS, S, LCOS, LS		0SG	0.8	1.6	4.0	5.0	6.0	5.0	6.0	7.0	6.0	7.0	8.0	1
FS, VFS, LFS, LVFS		0SG	0.4	1.0	3.5	4.5	5.5	4.0	5.0	6.0	5.0	6.0	7.0	2
And the second second second		0M	0.2	0.6	3.0	3.5	4.0	3.6	4.1	4.6	5.0	6.0	7.0	3
	DI	1	0.2	0.5	3.0	3.5	4.0	3.6	4.1	4.6	4.0	5.0	6.0	4
CSL, SL	PL	2.3	0.0	0.0	-	-		-	-			-	-	5
	PR/BK	1	0.4	0.7	3.5	4.5	5.5	4.0	5.0	6.0	5.0	6.0	7.0	6
	/GR	2,3	0.6	1.0	3.5	4.5	5.5	4.0	5.0	6.0	5.0	6.0	7.0	7
	29	0M	0.2	0.5	2.0	2.3	2.6	2.4	2.7	3.0	2.7	3.2	3.7	8
FSL, VFSL PL PR/BK /GR	PL	1,2,3	0.0	0.0	-		- 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19				-		and the second	9
		1	0.2	0.6	3.0	3.5	4.0	3.3	3.8	4.3	3.6	4.1	4.6	10
		2,3	0.4	0.8	3.3	3.8	4.3	3.6	4.1	4.6	3.9	4.4	4.9	11
L PL		0M	0.2	0.5	2.0	2.3	2.6	2.4	2.7	3.0	2.7	3.2	3.7	12
	PL	1,2, 3	0.0	0.0		-				-	-	and a state	- 47 C	13
-	PR/BK	1	0.4	0.6	3.0	3.5	4.0	3.3	3.8	4.3	3.6	4.1	4.6	14
	/GR	2,3	0.6	0.8	3.3	3.8	4.3	3.6	4.1	4.6	3.9	4.4	4.9	15
		0M	0.0	0.2	2.0	2.5	3.0	2.2	2.7	3.2	2.4	2.9	3.4	16
SIL	PL	1,2,3	0.0	0.0	-	1999 - ¹⁹ 18,	-	-	-	-	-	100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	17
	PR/BK	1	0.4	0.6	2.4	2.7	3.0	2.7	3.0	3.3	3.0	3.5	4.0	18
	/GR	2,3	0.6	0.8	2.7	3.0	3.3	3.0	3.5	4.0	3.3	3.8	4.3	19
		0M	0.0	0.0	-	-	-	-	-	- 10	-		-	20
SCL,CL SICL	PL	1,2,3	0.0	0.0	-	-	1997 - 1997	-	-	-	-	-	100 million	21
	PR/BK	1	0.2	0.3	2.0	2.5	3.0	2.2	2.7	3.2	2.4	2.9	3.4	22
	/GR	2,3	0.4	0.6	2.4	2.9	3.4	2.7	3.0	3.3	3.0	3.5	4.0	23
	0M	0.0	0.0	-	-	-	-	-	_	- Te	-	-	24	
SC, C, SIC	PL	1,2,3	0.0	0.0	State Sarah		-	-	-	the state	-	_		25
	PR/BK	1	0.0	0.0		- 2.2		-	-		-		-	26
	/GR	2,3	0.2	0.3	2.0	2.5	3.0	2.2	2.7	3.2	2.4	2.9	3.4	27
A 2000 by E. Jerry Tyler	В	C	D	E	F	G	Н	Ι	J	K	L	M	N	0

Table 1. Infiltration rates in gal/da/ft² for wastewater of >30 mg L⁻¹ or wastewater of <30 mg L⁻¹ and hydraulic linear loading rates in gal/da/ft for soil characteristics of texture and structure and site conditions of slope and infiltration distance. Values assume wastewater volume of >150 gal/da/bedroom. If horizon consistence is stronger than firm or any cemented class or the clay mineralogy is smectitic, the horizon is limiting regardless of other soil characteristics

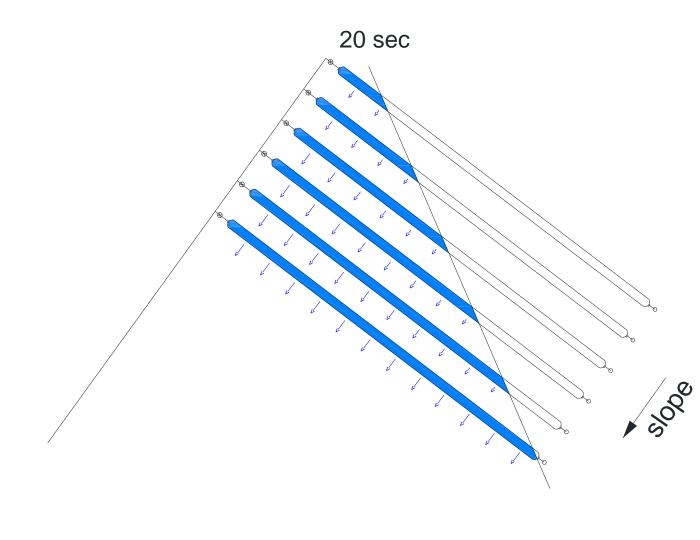



Area Requirement 1,800 SF x 0.2 gpd/SF = 360 gpd


Linear Loading Rate (LLR) 60 gpd / 60LF = 1.0 gpd/LF


<u>(LLR)</u> 1 apd/L F

1 gpd/LF x 6 = 6 gpd/LF 6 gpd/LF > 4 gpd/LF (not adviseable)



Q(gallons) @ time(minutes)

Line	1.0 min	2.0 min	3.0 min
1	2.0	8.7	15.4
2	2.3	9.0	15.7
3	2.8	9.5	16.2
4	3.6	10.3	17.0
5	4.6	11.3	18.0
6	5.8	12.5	19.2
Total	21.1	61.3	101.5
$\frac{Q_{6}-Q_{1}}{Q_{1}}$	190%	44%	25%

to the SHWT or to impervious layer.

4. Cover: The cover from the top of the LPP to the proposed gradient inches (6") to eighteen inches (18") (see § 6.84 and 6.85 of this Part, Fig.

5. All LPPs shall be timed-dosed, either by the timed-dosed technology precedin. Category 1 technology) or by incorporating a timed-dosed component as specified in 6.36(B) of this Part.

6. Flow differential between first (1^{st}) and last orifice in the laterals: The maximum head differential between the first (1^{st}) and last orifice on each lateral shall be no greater than fifteen percent (15%).

7. Pump events per day and maximum dose per LPP orifice: The number of dose events per day shall be between twelve (12) and twenty-four (24). The maximum dose per LPP orifice shall be one half (0.50) gallons.

Components of the LPP: LPPs shall also conform to other components in § 6.36(B) of "t: "Common components for all pressurized drainfields." 40 PVC or equivalent sweep elbows (also called "turnups") shall be attsch lateral to facilitate maintenance and inspection. A st

ARV

2000

ARV=Air/Vacuum Relief Valve