SIZING GUIDELINES

For New or Replacement Sewage Pumps

Sump and Sewage Pump
Manufacturers Association

CONTENTS

- Pump Capacity How much flow do you need?
- Total Dynamic Head (TDH) of the installation
- Solids-Handling Requirements
- Basin Selecting the right size
- Simplex or Duplex System?
- Sizing Example

PUMP CAPACITY

- Refers to the rate of flow in gallons per minute (GPM) which is necessary to efficiently maintain the system.

Most practical approach to determine this figure is the Fixture Unit method. This method assigns a relative value to each fixture, or group of fixtures that flow into the pump system.

Pump Capacity

To determine the required PUMP CAPACITY, follow these 2 steps:

Step 1: Determine Total Fixture Units
Step 2: Find resulting Pump Capacity

Step 1

List all fixtures involved in the installation and, using Figure A, assign a Fixture Unit value to each. Determine the Total Fixture Units.

Fixture Description	Fixture Unit Value	Fixture Description	Fixture			
Unit Value				$	$	(
:---						

Step 2

- Refer to Figure B, locate the total Fixture Unit amount along the horizontal axis of the graph. Follow vertically along until the intersecting plotted line. Follow this intersection point horizontally and read the PUMP CAPACITY in GPM on the vertical axis.

Pump Capacity based on total Fixture Units

FIGURE B

TOTAL DYNAMIC HEAD (TDH)

- Static Head is the actual vertical distance measured from the minimum water level in the BASIN to the point of discharge. Refer to Figure C.

Static Head

FIGURE C

CAUTION!

The point of discharge may not be the highest point in the piping system. A pump must be selected that has a shut-off head greater than the highest point in the pipe system.

FIGURE C

Friction Head

- Friction Head is the additional head created in the discharge system due to resistance to flow within its components. All straight pipe, fittings, valves, etc. have a friction factor which must be considered.
- These friction factors are converted, and expressed as equivalent feet of straight pipe, which can be totaled and translated into feet of head.

Step 1 in calculating Friction Head

- First determine the discharge pipe size.

- 2" or 3 " diameter is common on solids-handling sewage applications in residential / light commercial
- In order to ensure sufficient fluid velocity to carry solids (which is generally accepted to be 2 feet per second), the following are minimum required flows - even if the GPM required for the fixture units is less.

MINIMUM FLOW REQUIREMENTS

2 feet per second =

- 21 GPM through 2" pipe
- 46 GPM through 3" pipe
- 78 GPM through 4" pipe

If you don't have these minimums you won't move the solids!

Step 2 in calculating friction head

- The length of the discharge piping is measured from the distharge opening of the pump to the point of final discharge, following all contours and bends.

Friction factors for pipe fittings in terms of equivalent feet of straight pipe

Nominal Pipe Size	90 Elbow	45 Elbow	Tee (Thru-flow)	Tee (Branch flow)	Swing Check Valve	Gate Valve
$2^{\prime \prime}$	5.2	2.8	3.5	10.3	17.2	1.4
$21 / 2^{\prime \prime}$	6.2	3.3	4.1	12.3	150.7	1.7
$3^{\prime \prime}$	7.7	4.1	5.1	15.3	25.5	2.0

Consider all fittings - elbows, gate valves, check valves used in the installation...
(2) $\ldots .2$ " 90 degree elbows $=5.2 \times 2$ elbows in our example $=10.4$ feet of pipe
(1) $\neq .2$ " check valve $\quad 17.2$ feet of pipe Added all up....... 27.6 feet (or 28 feet)

Now add this $\mathbf{2 8}^{\prime}$ (equivalent feet) to the existing $\mathbf{2 0 0}$ ' length of discharge piping for a total of $\mathbf{2 2 8}$ '.

Refer to Figure E. Using the required PUMP CAPCITY (GPM) in the left Step 4 column, follow across to the number below the pipe size being used. This number represents the Friction Head per 100 feet of pipe. Multiply this number by the number of 100 ft increments to determine Friction Head.

TOTAL DYNAMIC HEAD (TDH) IS?

TDH = Static Head + Friction Head

Static Head................ 7 Feet
+ Friction Head.............. 3 Feet
Total Dynamic Head...... 10 Feet

Now look at pump curves in Figure F..... At 10 feet of head, we need a pump that can give us a minimum of 22 GPM.

Pump Selection

Oversizing the Pump?

- The most efficient part of the curve is usually in the middle of the curve, away from maximum head or flow
- More horsepower or flow is not always better - especially in smaller basins.
- Short cycling may reduce the life of the pump. A longer pumping cycle will be better for pump longevity.

SOLIDS HANDLING

- Solids-Handling requirements may be determined by local codes and/or by the type of application and types of solids.
- Unless otherwise specifically stated, SSPMA recommends that a sewage pump should have the capacity of handling spherical solids of at least 2" diameter.

Sump pump have solids handling of up to $1 / 2$ "
Effluent pump have solids handling of up to $3 / 4$ "

- Exception Effluent Turbine pumps.

BASIN SELECTION

- Selection of the basin is best accomplished by relating to the required Pump Capacity as determined by the Fixture Unit method.
- Figure G shows the recommended Basin Diameters assuming a pump differential of 8 " (Distance between pump turn-on and turn-off).
- Other factors such as pump size, controls, and accessories may impact the required basin size.
- Basin depth should normally be at least 24 " for most pumps, and deeper where greater pumping differentials are anticipated.

Recommended BASIN Diameters

SIMPLEX OR DUPLEX

The question of whether to use a Simplex (one pump) or Duplex (two pump) System depends on the type of installation and/or local codes requirements.

- Domestic/Residential Use:

Simplex System is adequate in most instances; however if entire residence is on the system, duplex may be required.

- Public/Commercial Use:

Duplex System is essential.

Simplex or Duplex System?

Duplex systems make use of special controls in order to alternate the usage of two pumps. Duplex systems provide several advantages over Simplex systems:

- The pumps alternate and therefore share the load.

- The lag pump is activated in the event of failure or lockage of the lead pump.
- The second pump is activated along with the lead pump in instances of unusually high inflow.

SIZING EXAMPLE

Using the pump curves from Figure F, fill out the Sewage Pump Sizing Worksheet and find a suitable pump to serve a 4 bathroom home, including a dishwasher, kitchen sink with disposal, washing machine, laundry tray, and a water softener.

- The Static Head is 15 feet
- The discharge pipe is 2 " diameter
- The discharge piping is 500 feet long
- The discharge piping will include (1) check valve, (3) 90 degree elbows, (2) 45 degree elbows, and (1) gate valve.

Example: Pump Capacity

Step 1: Determine Total Fixture Units

(Reference Figure A)

- (4) Bathroom Groups

6 Fixture Units each X4 = 24 Fixture Units

- (1) Dishwasher
- (1) Kitchen sink w/ disposal
= 3 Fixture Units
- (1) Washing Machine
- (1) Laundry Tray
- (1) Water Softener

Total
= 2 Fixture Units
= 2 Fixture Units
= 4 Fixture Units
= 37 Fixture Units

Step 2

FIGURE B

Example: Pump Capacity

Step 2: Find resulting Pump Capacity

(Reference Figure B)
37 Fixture Units $=23.5$ Gallons per Minute Minimum flow for $=21$ Gallons per Minute
2" diameter pipe
Minimum GPM $=$ 23.5 Gallons per Minute for this example

Round up to 24 Gallons per Minute

TDH = Static Head + Friction Head = 22 feet

Static Head $=15$ feet
 Friction Head $=7$ feet

Friction Factors
Equivalent feet
(Reference Figure D)
(3) 90 degree 2 " elbows $=5.2 \times 3$
(2) 45 degree 2 " elbows $=2.8 \times 2$
(1) 2" Gate valve $=1.4 \times 1$
(1) 2" Swing Check valve $=17.2 \times 1$
+500 ' straight pipe $=$
15.6
5.6
1.4
$\frac{17.2}{39.8 \text { equivalent } \mathrm{ft}}$ 539.8 equivalent ft
$539.8 \mathrm{ft} \times 1.3 /$ per $100 \mathrm{ft}=\mathbf{7 . 0 2} \mathrm{ft}$. of friction head

Example: Pump Selection

Turbine Effluent Pumps

Components:

- Bottom end: Electric Motor
- Center: Intake Screen
- Top end: Floating Impeller or Stack

Higher Heads - Low Flows

Many Models

- 10,19,27,35,55,85 GPM
- $115 \mathrm{~V}, 230 \mathrm{~V}$
- 0.5 to 3 hp

Filtered Pump Vault

Pump Tank

Mlore Pump Vaulis

-Residential System -S.T.E.P. Systems

15 x 48 Pump Screen

Main Features

- 1/8" perforated polypropylene
- Built in Float Tree Bracket
- "J" Hook Wire Organizer
- High Strength construction
- Unit weighs less than 16 pounds
- Base excepts concrete for extra weight
- 2" raised bottom
- 13-1/2" Inside Diameter
- 15-1/2" Outside Diameter
- 48" overall height
- Over $\mathbf{8 5 0}$ square inches of open area
- Over 69,000 1/8" round holes

Float Tree Bracket accepts 1-1/4" or 1-1/2"

Part\# STF-1548P125
Also, available in other sizes

Questions?

Sump and Sewage Pump Manufacturers Association

Pump Companies
Barnes Pump/Crane Pumps \& Systems
Champion Pump Company
Eco-Flo Products / Ashland Pump Company
Franklin Electric / Little Giant
Goulds Water Technology
Liberty Pumps
Pentair Water
Superior Pump
Zoeller Company

Associate Members
Alderon Industries John Crane, Inc.

SJE-Rhombus
Topp Industries, Inc.

Website:

Thank You!

Matt Rousseau

T.G. Rankin Co. Inc.

Disclaimer: This presentation was prepared and/or accomplished by SSPMA and Matt Rousseau in his personal capacity. The opinions expressed in the presentation are the author's own and do not reflect the view of NOWRA.

