SIZING GUIDELINES

For New or Replacement Sewage Pumps

Sump and Sewage Pump Manufacturers Association

CONTENTS

- **Pump Capacity** How much flow do you need?
- Total Dynamic Head (TDH) of the installation
- Solids-Handling Requirements
- **Basin** Selecting the right size
- **Simplex or Duplex** System?
- Sizing Example

PUMP CAPACITY

- Refers to the rate of flow in gallons per minute (GPM) which is necessary to efficiently maintain the system.
 - Most practical approach to determine this figure is the **Fixture Unit method.** This method assigns a relative value to each fixture, or group of fixtures that flow into the pump system.

Pump Capacity

To determine the required **PUMP CAPACITY**, follow these 2 steps:

Step 1: Determine Total Fixture Units Step 2: Find resulting Pump Capacity

Copyright © 2011, Sump and Sewage Pump Manufacturers Association

List all fixtures involved in the installation and, using Figure A, assign a Fixture Unit value to each. Determine the **Total Fixture Units**.

Fixture Description	Fixture Unit Value	Fixture Description	Fixture Unit Value		
Bathtub, 1 1/2" trap	2	Sink, service type	3		
Bathtub, 2" trap	3	3 Sink, scullery			
Bidet, 1 1/2" trap	3	Sink, surgeons	3		
Dental unit or cuspidor	1	Swimming pool (per 1000 gal)	1		
Drinking fountain	1	Urinal	4**		
Dishwasher, domestic	2	Washing machine	2		
Kitchen sink	2	Water closet	3**		
Kitchen sink with disposal	3	Water softener	4		
Lavatory, 1 1/2" trap	1	Unlisted fixture, 1 1/4" trap	2		
Lavatory, barber/beautician	2	Unlisted fixture, 1 1/2" trap	3		
Laundry tray	2	Unlisted fixture, 2" trap	4		
Shower	2	Unlisted fixture, 2 1/2" trap	5		
Shower, group (per head)	3	Unlisted fixture, 3" trap	6		
Bathroom group consisting of lavatory, bathtub or shower, and water closet					

*Graph data taken from ASPE Handbook, Uniform Plumbing Code, Cameron Hydraulic Data and Plastic Pipe Institute.

** Add 4 fixture units for each flush valve fixture

Refer to Figure B, locate the total Fixture Unit amount along the horizontal axis of the graph. Follow vertically along until the intersecting plotted line. Follow this intersection point horizontally and read the PUMP CAPACITY in GPM on the vertical axis.

Pump Capacity based on total Fixture Units

FIGURE B

TOTAL DYNAMIC HEAD (TDH)

TDH is a combination of **Static Head** and **Friction Head** and is expressed in feet.

TDH = Static Head + Friction Head

 Static Head is the actual vertical distance measured from the minimum water level in the BASIN to the point of discharge. Refer to Figure C.

Static Head

CAUTION!

The point of discharge *may not* be the highest point in the piping system. A pump must be selected that has a shut-off head greater than the highest point in the pipe system.

Copyright © 2011, Sump and Sewage Pump Manufacturers Association

FIGURE C

Friction Head

- Friction Head is the additional head created in the discharge system due to resistance to flow within its components. All straight pipe, fittings, valves, etc. have a friction factor which must be considered.
- These friction factors are converted, and expressed as equivalent feet of straight pipe, which can be totaled and translated into feet of head.

Step 1 in calculating Friction Head

- First determine the discharge pipe size.
 - 2" or 3" diameter is common on solids-handling sewage applications in residential / light commercial
- In order to ensure sufficient fluid velocity to carry solids (which is generally accepted to be 2 feet per second), the following are *minimum* required flows
 even if the GPM required for the fixture units is less.

MINIMUM FLOW REQUIREMENTS

- 2 feet per second =
 - I 21 GPM through 2" pipe
 - □ 46 GPM through 3" pipe
 - o 78 GPM through 4" pipe

If you don't have these minimums – you won't move the solids!

Step 2 in calculating friction head

The length of the discharge piping is measured from the discharge opening of the pump to the point of final discharge, following all contours and bends.

Step 3

FIGURE D

Friction factors for pipe fittings in terms of equivalent feet of straight pipe								
Nominal Pipe Size	90 Elbow	45 Elbow	Tee (Thru-flow)	Tee (Branch flow)	Swing Check Valve	Gate Valve		
2"	5.2	2.8	3.5	10.3	17.2	1.4		
2 1/2"	9.2	3.3	4.1	12.3	20.0	1.7		
3"	7.7	4.1	5.1	15.3	25.5	2.0		

Consider all fittings - elbows, gate valves, check valves used in the installation...

 $\begin{array}{rcl} (2) & \dots & 2^{"} & 90 \text{ degree elbows} = 5.2 & x & 2 \text{ elbows in our example} = 10.4 \text{ feet of pipe} \\ (1) & \dots & 2^{"} & \text{check valve} & = & & & & & \\ \text{Added all up.....} & & & & & & & & & \\ \end{array}$

Now add this 28' (equivalent feet) to the existing 200' length of discharge piping for a total of 228'.

Step 4 Refer to Figure E. Using the required PUMP CAPCITY (GPM) in the left column, follow across to the number below the pipe size being used. This number represents the Friction Head per 100 feet of pipe. Multiply this number by the number of 100ft increments to determine Friction Head.

	Nominal Pipe Size						
		(2")		2 1/2"		3"	
	GPM	Plastic	Steel	Plastic	Steel	Plastic	Steel
	20	.	0.9				
	25	(1.3)	1.3				
	30	<u>.</u> .	1.8	0.6	0.9		
Our Example required 22 GPM 5 6 7 8 9 1	35	2.4	2.4	0.8			
	d 40	3.1	3.1	1.0		FRICTIC	DN
	45	3.8	3.8	1.3	Using a 2"	line with flc	ow of 25 GPM
	50	4.7	4.7	1.	we have	1.3 feet of h	lead for every
	60	6.5	6.6	2.	100 feet c	of pipe. For	our example
	70	8.6	8.8	2.			length of pipe
	80	11.1	11.4	3.7		a de la companya de l	eet of head.
	90	13.8	14.3	4.6			riction Head)
	100	16.8	17.5	5.6			netion ricau)
	125			8.3	10.		
	120			12.0	15.5	4.9	5.1
	175			16.4	20.9	6.4	6.9
	200					8.4	8.9

TOTAL DYNAMIC HEAD (TDH) IS?

TDH = Static Head + Friction Head

Static Head	7 Feet
-------------	--------

+ Friction Head...... 3 Feet

Total Dynamic Head.....10 Feet

Now look at pump curves in Figure F..... At 10 feet of head, we need a pump that can give us a minimum of 22 GPM.

Pump Selection

Oversizing the Pump?

- The most efficient part of the curve is usually in the middle of the curve, away from maximum head or flow
- More horsepower or flow is not always better – especially in smaller basins.
- Short cycling may reduce the life of the pump. A longer pumping cycle will be better for pump longevity.

SOLIDS HANDLING

- Solids-Handling requirements may be determined by local codes and/or by the type of application and types of solids.
- Unless otherwise specifically stated, SSPMA recommends that a sewage pump should have the capacity of handling spherical solids of at least 2" diameter.

Sump pump have solids handling of up to 1/2 "

Effluent pump have solids handling of up to 3/4 "

Exception Effluent Turbine pumps.

BASIN SELECTION

- Selection of the basin is best accomplished by relating to the required Pump Capacity as determined by the Fixture Unit method.
- Figure G shows the recommended Basin Diameters assuming a pump differential of 8" (Distance between pump turn-on and turn-off).
- Other factors such as pump size, controls, and accessories may impact the required basin size.
- Basin depth should normally be at least 24" for most pumps, and deeper where greater pumping differentials are anticipated.

Recommended BASIN Diameters

Copyright © 2011, Sump and Sewage Pump Manufacturers Association

SIMPLEX OR DUPLEX

The question of whether to use a Simplex (one pump) or Duplex (two pump) System depends on the type of installation and/or local codes requirements.

Domestic/Residential Use:

Simplex System is adequate in most instances; however if entire, residence is on the system, duplex may be required.

Public/Commercial Use:
 Duplex System is essential.

Simplex or Duplex System?

Duplex systems make use of special controls in order to alternate the usage of two pumps. Duplex systems provide several advantages over Simplex systems:

The pumps alternate and therefore share the load.

- The lag pump is activated in the event of failure or lockage of the lead pump.
- The second pump is activated along with the lead pump in instances of unusually high inflow.

SIZING EXAMPLE

Using the pump curves from Figure F, fill out the Sewage Pump Sizing Worksheet and find a suitable pump to serve a 4 bathroom home, including a dishwasher, kitchen sink with disposal, washing machine, laundry tray, and a water softener.

- The Static Head is 15 feet
- The discharge pipe is 2" diameter
- The discharge piping is 500 feet long
- The discharge piping will include (1) check valve, (3) 90 degree elbows, (2) 45 degree elbows, and (1) gate valve.

Example: Pump Capacity

Step 1: Determine Total Fixture Units

(Reference Figure A)

- (4) Bathroom Groups
 6 Fixture Units each
 X4 = 24 Fixture Units
- (1) Dishwasher
- (1) Kitchen sink w/ disposal
- (1) Washing Machine
- (1) Laundry Tray
- (1) Water Softener

Total

- = 2 Fixture Units
- = 3 Fixture Units
- = 2 Fixture Units
- = 2 Fixture Units
- = 4 Fixture Units
- = 37 Fixture Units

Copyright © 2011, Sump and Sewage Pump Manufacturers Association

Example: Pump Capacity

Step 2: Find resulting Pump Capacity

(Reference Figure B)

- 37 Fixture Units = 23.5 Gallons per Minute
- 2" diameter pipe
- Minimum flow for = 21 Gallons per Minute
 - Minimum GPM = 23.5 Gallons per Minute for this example

Round up to 24 **Gallons per Minute**

TDH = Static Head + Friction Head = 22 feet

Static Head = 15 feet

Friction Head = 7? Teet

Friction Factors

(3) 90 degree 2" elbows = 5.2 X 3 (2) 45 degree 2" elbows = 2.8 X 2 (1) 2" Gate valve = 1.4 X 1 (1) 2" Swing Check valve = 17.2 X 1 + 500' straight pipe = 539.8 equivalent ft

Equivalent feet

(Reference Figure D)

539.8 ft X 1.3/per 100 ft = 7.02 ft. of friction head

Example: Pump Selection

Turbine Effluent Pumps

Real of the many and grant of the second strategy and the second s

Components:

- Bottom end: Electric Motor
- Center: Intake Screen
- Top end: Floating Impeller or Stack
- Higher Heads Low Flows

Many Models

10,19,27,35,55,85 GPM
115V, 230V
0.5 to 3 hp

Filtered Pump Vault

More Pump Vaults

•Residential System •S.T.E.P. Systems

15 x 48 Pump Screen

Main Features

- 1/8" perforated polypropylene
- Built in Float Tree Bracket
- "J" Hook Wire Organizer
- High Strength construction
- Unit weighs less than 16 pounds
- Base excepts concrete for extra weight
- 2" raised bottom
- 13-1/2" Inside Diameter
- 15-1/2" Outside Diameter
- 48" overall height
- Over 850 square inches of open area
- Over 69,000 1/8" round holes

Copyright © 2011, Sump and Sewage Pump Manufacturers Association

Sump and Sewage Pump Manufacturers Association

Pump Companies

Barnes Pump/Crane Pumps & Systems Champion Pump Company Eco-Flo Products / Ashland Pump Company Franklin Electric / Little Giant Goulds Water Technology Liberty Pumps Pentair Water Superior Pump

Zoeller Company

Associate Members

Alderon Industries John Crane, Inc. SJE-Rhombus Topp Industries, Inc.

Website: www.sspma.org

Thank You!

Matt Rousseau T.G. Rankin Co. Inc.

Disclaimer: This presentation was prepared and/or accomplished by SSPMA and Matt Rousseau in his personal capacity. The opinions expressed in the presentation are the author's own and do not reflect the view of NOWRA.