How Pump Tanks can be used to Communicate the Need for Maintenance to the Customer

Bruce Lesikar
Filtiration Application Engineer
United Rentals

Disclaimer

> NOWRA Disclaimer: The material being presented represent the speaker's own opinions and do NOT reflect the opinions of NOWRA.
> Thank you to Consortium of Institutes for Decentralized Wastewater Treatment for materials assisting this presentation

Overview

> Pump tank systems
$>$ Location in the treatment system
$>$ What does a clean/dirty pump tank communicate
> Control panel components

- Calculating flow from a facility
$>$ High water alarms -what does an alarm mean

Pump Tank Systems

> Component of pressurized distribution systems

- Pump tank
- Pump
- Water level sensors, generally floats
- Control panel
- High water alarm

Pump Tank

Pump Tank / Spray System

Water Quality in Pump Tank?

$>$ Water runs through components to pump tank
> After treatment:

- Clear water = treatment
- Trash, solids, debris - why is the material in the
 pump tank?

Control Panels

$>$ Housing for components needed to control a system.
$>$ Record valuable operational information
$>$ Provide a means to
 monitor the system
$>$ Works in cooperation with floats \& sensors

Floats Functions

$>$ Off

- Redundant off
$>$ On
$>$ Dose volume is between Off \&On
- Alarm
> Alarm volume
- Critical for owner

Sensor Functions

$>$ Off

- Turns timer off
$>$ On
- Timer operates the pump
> Alarm
- Turns on the alarm
$>$ Peak enabler
- Changes the dosing frequency (PLC)
> Amber alarm
- Management response to extra water

Critical Controls for measuring flow through a system

> Meter readings

- Elapsed time meter (ETM) present:
- Present reading (PTR)
- Last reading (LTR)
- Cycle/event counter (CC) present:
- Present reading \qquad (PCR)
- Last reading (LCR)

Number of Doses: CC

$>$ Using Cycle Counters (CC)

- What do I need to have?
- Days between readings
- (only when in operation)
- Designed number of cycles (Dose frequency)
- Change in value = Total number of cycles (NC)
- Designed maximum cycles
- Days x Dose frequency = Max cycles
- Compare to actual

Cycle Counter Operation

- Cycle Counter Reading:
- Present reading: 45,289 cycles
- Last reading: 44,891 cycles
- Calculate the number of cycles by subtracting Last reading from the Present reading.
- 45,289 cycles $-44,891$ cycles $=398$ cycles
$>$ What does it mean?
- Total times the system turned on/off

Estimating Water Usage Based

on Cycle Counter Reading

$>$ Number of cycles over period of time \div Days in period of time = Pump cycles per day (CPD)
> Site with annual site visit, design 4-5 CPD

- 398 cycles $\div 365$ days ≈ 1 CPD
> Same site with 100 days between visits
- $398 \div 100=4$ CPD
$>$ Another site
- 3905 cycles $\div 365$ days $=10.6 \mathrm{CPD}$

Measuring Flow: CC

> Using Cycle Counters (CC)

- What do I need to have?
- Days between readings
- (only when in operation)
- Change in value = Total number of cycles (NC)
- Dose Volume (DV) - Use net volume
- Net volume - Remove drain back from volume pumped
- Total flow
, NC \times DV $=$ Total flow
- Total flow \div Days = Average Daily Flow

Total Gallons with CC

$>$ Cycle Counter (CC)

- [(PCR) $-(\mathrm{LCR})] \times(\mathrm{DV})=\ldots$ Total gallons
$(45,289-44,891) \times 77.3 \mathrm{gal}=30,765$
- Total gallons $\div(\#$ of days this period $)=$ GPD

$$
30,765 \mathrm{gal} \div 365 \text { days }=84 \text { GPD }
$$

Measuring Flow: ETM

> Using Elapsed Time Meter (ETM)

- What do I need to have?
- Days between readings
- (only when in operation)
- Change in value = Total number of units
- Minutes
- Hours
- Pump capacity (gpm)- will not be the net volume
- Total flow = Elapsed Time x Pump capacity
- Total flow - (total d-back) \div Days = Average daily flow

Total Gallons with ETM

> Elapsed Time Meter (ETM)

- [(PTR) - (LTR)] $\times($ GPM $)=$ Total gallons
- $(15,703-14,509) \times 25.8 \mathrm{gpm}=30,805 \mathrm{gal}$
- Total gallons $\div(\#$ of days this period $)=$ GPD
-30,805 gal $\div 365$ days $=84$ GPD

Calculating Gallons Per Day (GPD)

$>$ Total gallons $\div(\#$ of days this period $)=$ gpd
-CC: 30,765 gal $\div 365$ days $=84$ gpd

- ETM: 30,805 gal $\div 365$ days $=84$ gpd
> But only Seasonal Home!
- CC: $30,765 \mathrm{gal} \div 100$ days $=307 \mathrm{gpd}$
- ETM: $30,805 \mathrm{gal} \div 100$ days $=308 \mathrm{gpd}$
$>$ Design flow $=450 \mathrm{gpd}$
- $(308 \mathrm{gpd} \div 450 \mathrm{gpd}) \times 100=68 \%$

A difference in the Daily flow estimates communicates?

- Which flow estimation method is accurate? CC or ETM
> What does a CC estimated daily flow measure: number of dose \& dose volume
$>$ What does an ETM estimated daily flow measure: pump run time and pump flow rate
$>$ What if CC estimate is 84 GPD and ETM estimate is 168 GPD

What does a High Level in the Pump Tank mean?

Malfunction

$>$ Defined: Not performing its intended purpose.
> Component malfunction versus System malfunction
$>$ Purpose of treatment system

- Protect Public Health
- Protect Public Safety
- Protect Environmental Health
- Protect Environmental Safety
$>$ Hard malfunction: component malfunction leads to system malfunction
> Soft malfunction: component malfunction not result in system malfunction

High Level Condition Communicates

$>$ Excess water usage
> Pump malfunction
> System water tightness issue
$>$ Maintenance needed
$>$ Timer malfunction
> Timer settings
Float settings tether length
> Float malfunction
> Power was off for a period of time

Summary

> Pump tank system components
$>$ Water quality, debris in tank.
$>$ Flow calculations

- Cycle counter
- Elapsed time meter
- Comparison of the numbers
> High water condition can be an indication of many different issues.
> Soft malfunction - High water alarm

References

> CIDWT. 2009. Installation of Wastewater Treatment Systems. Developed by Consortium of Institutes for Decentralized Wastewater Treatment (CIDWT). Midwest Plan Service. Iowa State University. Ames, IA. December 2009.
> CIDWT. 2006. Residential Onsite Wastewater Treatment Systems: An Operation and Maintenance Service Provider Program. Developed by Consortium of Institutes for Decentralized Wastewater Treatment (CIDWT). Midwest Plan Service. Iowa State University. Ames, IA. January 2006.

