

CASE STUDY

Treatment of High Strength Wastewater from a small Slaughterhouse / Meat processing plant

Content

- 1. History, Context and Regulatory requirements
- 2. Design
- 3. Phase I
- 4. Phase II
- 5. Summary
- 6. Questions

History, Context and Regulatory requirements

History, Context and Regulatory requirements

- Small rural slaughterhouse and meat processing plant operating for 30 years;
- Slaughter once a week;
- Meat processing and boutique open 5 days;
- Failed bed overflowing toward a river less than 30m away;
- Started the process toward compliance in 2010;
- Two CofA are required: 1 for the wastewater system and 1 for the operation (industrial);
- We got involved in 2013;

	Enviro-STEP

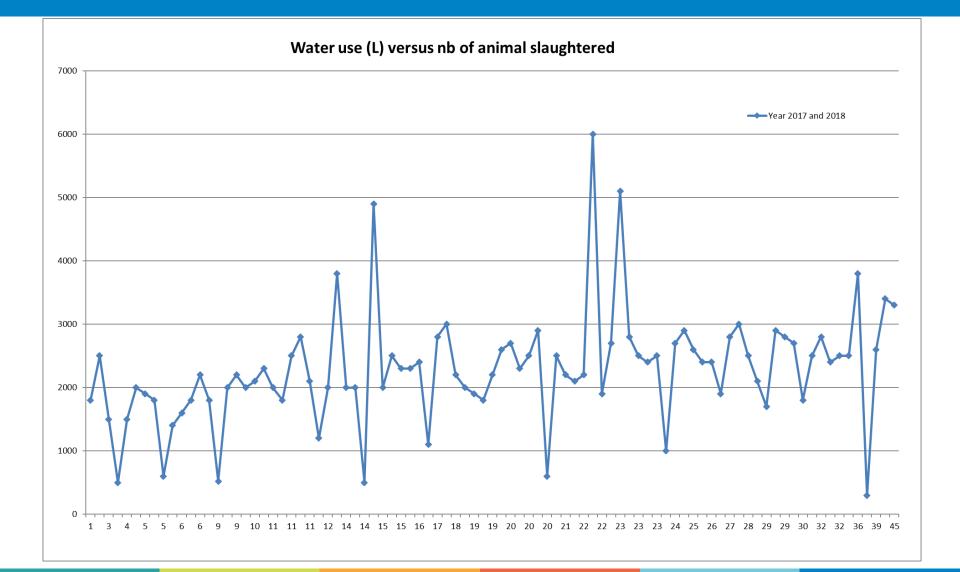
Design Challenges

Principal challenges ;

- Very small water usage affecting the concentration of pollutants;
- Limited budget;
- Limited and unqualified manpower to operate and maintain a sewage treatment plant;
- Convincing MOE to remain simple;
- Bring high strength wastewater to domestic strength using the simplest way possible;

Things that were playing to our advantage:

- Permeable soil making subsurface infiltration possible. Otherwise, disinfection and phosphorus removal to 1 mg/L would have been required for surface discharge;
- A water meter was present;
- Very understanding and collaborating clients;



Design Challenges

Things that were playing against us:

- Variations in loadings (type of animal, ritual practices, rigor of operation from staff, etc.)
- Literature and guidelines are rarely representative of small facilities;
- Authorities measure compliance based only on effluent concentration instead of daily discharge loading (kg/d or lbs/d). This can be detrimental to low water use facilities;
- Annual outside temperature ranging from -30 to +30 degree C;

Design – Flowrate during the kill day

Design – Sewage strength

Data	from
litera	ture:

Reference	Soluble COD (mg/L)	TSS (mg/L)	TKN (mg/L)	TP (mg/L)
Massé, Agri-Food Canada	778 à 4 551	957 à 2 397	90 à 629	20 à 80
Sedmack, Wisconsin 2006	-	603	88	16
Chen, 2003	700 à 1400	137 à 500	-	-
Pozo, 2003	5500	910	690	3.3
Sectorial Technical Guide - slaughterhouses, MDDEFP 1999	2939	560	199	24

Data from 2011 characterization:

	Parameter	Concentration (mg/L)	Parameter	Concentration (mg/L)
	BOD ₅	61	Azote NTK	481
	Soluble BOD ₅	50	Azote NH4 ⁺	13.3
:	COD	6250	Coliformes fécaux	> 60 000
	Soluble COD	3240	Huiles et graisses	259
	TSS	792	Température	10 degrés
	Total Phosphorus	14.5	рН	7,4

	Date	CBOD5 (mg/L)	TKN Grease interceptor effluent (mg/L)
Data from field	24-07-2018	1760	334
sampling:	03-08-2018	1080	222
	09-08-2018	910	330

Design criteria

Design Flowrate:

- High strength portion:
- 4 400 L during the kill day (max high strength flow)1 600 L/d equalized high strength design flow2 000 L/d equalized total flow

Design concentrations:

High strength:

Total flow:

•

Parameters	Concentration (mg/L)		
BOD₅	2 500		
Soluble BOD ₅	2 000		
COD	6 250		
Soluble COD	3 000		
TSS	800		
Total Phosphorus	20		
TKN	400		
Oils, fats and greases	259		
Temperature	10 degree C		
рН	7,4		

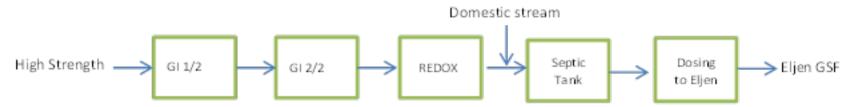
Domestic:

Parameters	Concentration (mg/L)		
BOD ₅	250		
TSS	300		
Total Phosphorus	10		
TKN	50		

Design : Effluent Quality Objective

Effluent quality at the septic tank (before final treatment) :

Parameters	Concentration (mg/L)
Soluble BOD₅	200
TSS	100
Total Phosphorus	10
TKN	50
OFG	50
рН	5.5 to 9.5


Effluent quality before infiltration:

- CBOD₅: 15 mg/L
- TSS: 15 mg/L
- Fecal Coliform: 50 000 CFU/100ml

	Enviro-STEP Technologies inc.

Initial Treatment Train installed :

Treatment steps:

High strength:

- 2 x 5 000 L Grease Interceptor with effluent filter (in the last tank)
- 1 x 12 000 L BIO-REDOX single stage completely mixed bioreactor consisting in 4 000 L aerated compartment and 12 000 L settling and sludge accumulation compartment with lamellar tubes;

Mixed effluent (pretreated and domestic):

- 1 x 5 000 L septic tank with effluent filter
- 1 x 4 000 L dosing tank
- Eljen GSF combined and dispersal system (42 modules over 65 m²)

Phase I - Results

Observations:

- REDOX extremely powerful on BOD5C, COD, NH4 and TKN;
- Grease interceptor very efficient on FOG
- Domestic waste appears to contribute to increasing of overall concentrations (effects of very small flow)

We had to conclude that we were not meeting the MOE discharge objective

Paramètre	Concentration
	(mg/L)
DBO ₅ soluble	200
MES	100
Phosphore total	12
Azote NTK	60
Huiles et graisses	50
pH	5.5 à 9.5

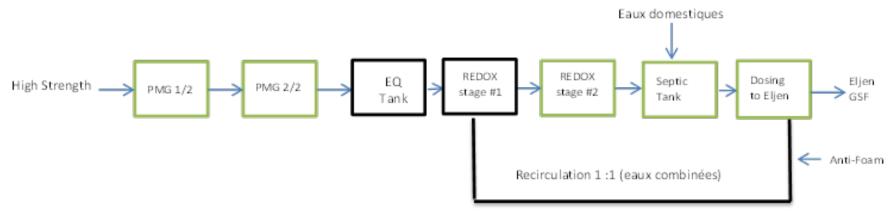
Results : REDOX July 2018

	CBOD5	COD	TSS	TP	TKN	рΗ	NH4
Influent	1760				334		232
Effluent	119				60.2		39.7

Results : REDOX August 2018 (sample #1)

	DBO ₅ C	DCO	MES	Ptot	NTK	рН	NH4
Affluent	1080	2300			222		200
Effluent	93	583			46.2		22.1

Results : REDOX August 2018 (sample #1)


	DBO ₅ C	DCO	MES	Ptot	NTK	рН	NH4
Affluent	910	2740			330		209
Effluent	45	341			57.4		19.5

Results : Septic Tank Effluent

	CBOD5	COD	TSS	TP	TKN	рН	OFG
January 2018	109	1050	84	18.0	145	8.0	50
March 2018	280	746	87	11.9	138	7.7	40
April 2018	163	57 ⁸	73	8.7	125	8.7	18
May 2018	72	312	104	7.7	133	8.0	5
June 2018	156	423	168	8.7	92	7July	36
July 2018	76	385	67	9.8	58	8.0	14

Initial Treatment Train installed :

Modifications:

- Adding a 3 000 L dosing tank after the Grease Interceptor;
- Adding a 7 000 L REDOX unit as Stage I for BOD reduction;
- The existing 12 000 L (4 000 + 8 000) REDOX become Stage 2 for nitrogen reduction
- Add a recirculation loop from the final dosing tank back to REDOX Stage I with adjustable flow for flexibility (set to 50/50 at startup);

Phase II - Results

Date	08-07-2019	06-08-2019	28-08-2019	10-09-2019	19-09-2020	30-09-2019	03-10-2019	17-10-2019	7-11-2019	02-12-2019	09-01-2020	06-02-2020	05-03-2020
TSS (mg/l)	45	44	83	18	23	19	26	56	30	16	20	27	36
CBOD5 (mg/l)	27	12	39	4	5	3	12	18	11	7	18	7	28
TKN (mg/l)	64	54.7	65.9	16.4	57.6	62.1	70.6	74.9	53.2	37.5	27.4	54.6	37
Ptot (mg/l)	10.3	11.4	10.2	8.43	13.8	18.9	20.9	24.7	27	25.4	16.3	10.1	7.09

Date	14-04-2020	16-04-2020	07-05-2020	08-06-2020	06-07-2020	03-08-2020	01-09-2020	05-10-2020	02-11-2020	07-12-2020	06-01-2021	Average	Objective
TSS (mg/l)	60	88	64	24	24	10	9	13	15	19	11	34.1	100
CBOD5 (mg/l)	32	26	29	8	8	5	4	8	6	5	9	14.7	200
TKN (mg/l)	31.8	48.7	29.3	10.3	8.9	9.2	9.5	14.3	23.5	59.6	50.7	52.0	60
Ptot (mg/l)	5.94	9.66	7.22	21.3	22.7	24.3	5.37	23.5	15.3	11.2	10.6	15.7	12

Newest data 2021:

Date	08-02-2021	08-03-2021	07-04-2021	11-05-2021	07-06-2021	05-07-2021	09-08-2021	Average (full)	Objective
TSS (mg/l)	24	27	50	28	25	56	30	34.14	100
CBOD5 (mg/l)	9	6	30	10	8	7	8	13.90	200
TKN (mg/l)	71.7	89.1	79	48.1	37.8	46.3	33.9	53.35	60
TP (mg/l)	9.67	8.81	6.45	10	16.6	25	21	15.30	10
рН	7.91	7.98	6.46	7.42	7.84	7.55	7.48	7.52	5.5 to 9.5
OFG	< 5	9	< 5	< 5	11	6	8	8.50	50
Alcalinity (mg/l)	355	439	369	148	273	325	244	307.57	N/A

Observations:

- We meet the discharge criteria except for phosphorus;
- Client started in June 2020 a phosphorus source reduction pilot project using aluminum sulfide tablets;

Summary

- Onsite Wastewater Treatment of very high strength application can be achieved successfully using the combination
 of properly designed simple processes;
- Flow and sewage characterization are essential in good design;
- Good practices and source reduction should be the first steps implemented;
- Client education on cause to effect relationship of cleaning practices on system performances are important;
- Pretreatment must be done using flexible technologies (sufficient safety factor, room for modifications, adaptability to flow and loading variation, etc.);
- Equalization is extremely important
- Sludge management must be planned and budgeted properly. High strength = higher volumes of sludge;

QUESTIONS

End of presentation

Enviro-STEP Technologies:

info@enviro-step.ca / www.enviro-step.ca

