Media Filter Operational Process Kevin Sherman, P.E*., Ph.D., D. WRE Director of Engineering and Regulatory Affairs

*PE in AZ, FL, GA, ID, IN, KY, MS, NC, NH, NM, OH, PA, TX, VA, VT, WI, WY

Residential & Commercial Denitrification Units

What are Media Filters?

- Other names: attached growth, fixed film, packed bed, biofilter or trickling filter
- Use natural (e.g. gravel, sand, peat, coir) or man-made (textile, open cell and closed cell foams, polypropylene fiber, synthetic sand or polystyrene bead) media
- single pass or recirculating configurations

What properties are prized in a media?
High surface area / volume
Pathways for water and air to

enter the media and pass through and around it

 Excess liquid must quickly drain from media

 Yet still hold on to residual moisture well

Free-swimming and stalked ciliates

Flow & Treatment on Media Jantrania & Gross, 2006

Weeks

Oxygen Demand (mg/L)

Where a sufficient number of nitrifying organisms are present, nitrification can occur as shown by the dotted curve.

Metcalf & Eddy figure 3-15

Nitrogenous biochemical oxygen demand, NBOD

Nitrifying bacteria =chemoautotrophs

Heterotrophic bacteria = `carbon eaters'

Nitrification is usually observed to occur from 5 to 8 days after the start of the BOD incubation period.

Carbonaceous biochemical oxygen demand, CBOD

3-pump System Operation

Recirculation Pump is dual function – sprays wastewater over treatment media & draws in outside air through use of Venturi

Return Pump sends sloughed solids back to head of primary septic tank & recycles nitrified wastewater to create anoxic conditions

Discharge Pump discharges treated wastewater to disposal field(s) up to 24 times a day

Control Panel monitors all activity in system & sends alarm conditions for any problems

Residential System Overview

Primary Septic Tank✓ 2 Compartment✓ Effluent Filter

Processor Tank ✓ Polystyrene Bead Treatment Media ✓ Self Cleaning Processor External Piping ✓ Inlet / Discharge Line ✓ Return Line ✓ Air Intake ✓ Electrical Conduit

Residential Treatment Media

Residential Control Panel

NEMA 4x Enclosure

Audible / Visual Alarm

Hand / Off / Auto Switches

Removable OIT

Residential Processors

Processor Model	Bedrooms	Tank Capacity
500 gpd	4	1,060 Gallons
750 gpd	6	1,250 Gallons
1,000 gpd	8	1,500 Gallons

Residential System landscaped

Nitrogen Reducing Aerobic Treatment Units

- Are Effective at Removing 85% + of Nitrogen from Wastewater
 Must Have Anaerobic, Anoxic & Aerobic Environments to sequentially nitrify / denitrify wastewater
- Systems Must Fully Nitrify the Wastewater before Denitrification occurs
 - Factors that Optimize Nitrification
 - Plenty of Air
 - Stable pH
 - Water Temperature above 50°F
 - Sufficient Alkalinity to buffer system pH
 - Long Retention Times

Removing Nitrogen Biologically (Nitrification)

Overall Reaction

$$NH_4^+ + 2O_2 \rightarrow NO_3^- + 2H^+ + H_2O$$

Requires Oxygen (4.6 lb/lbN)

Uses up Alkalinity (7.1 lb/lbN)

Nitrifying bacteria

Nitrogen Removal Explained

Nitrification — The Conversion of Influent Ammonia to Nitrite \rightarrow Nitrate

Denitrification — The Conversion of Nitrate to Nitrogen Gas:

Separating O_2 from NO_3 to Release N_2 (Gas)

"You Must Nitrify Before You Can Denitrify"

Operation & Maintenance

Onsite Visual Inspection of All System Components Tank, pumps, float switches, control panel, telemetry and audio/visual alarm Visual inspection of electrical splices and contacts, check/record amperage and voltage readings Visual inspection of filter media Exercise all mechanical valves Sensory examination of treated effluent for clarity, odor, oily sheen, foaming or any other unusual characteristics Download flow data – 90 days of flow stored in PLC Maintain inspection log with entries for all service activities, observations, and field test readings.

Operation & Maintenance

