Development and application of a synthetic high strength waste formulation for evaluating aerobic treatment unit performance

Texas A&M OSSF Research Team

June Wolfe III Gabriele Bonaiti Anish Jantrania Ryan Gerlich

The materials being presented represent the speaker's own opinions and do NOT reflect the opinions of NOWRA.

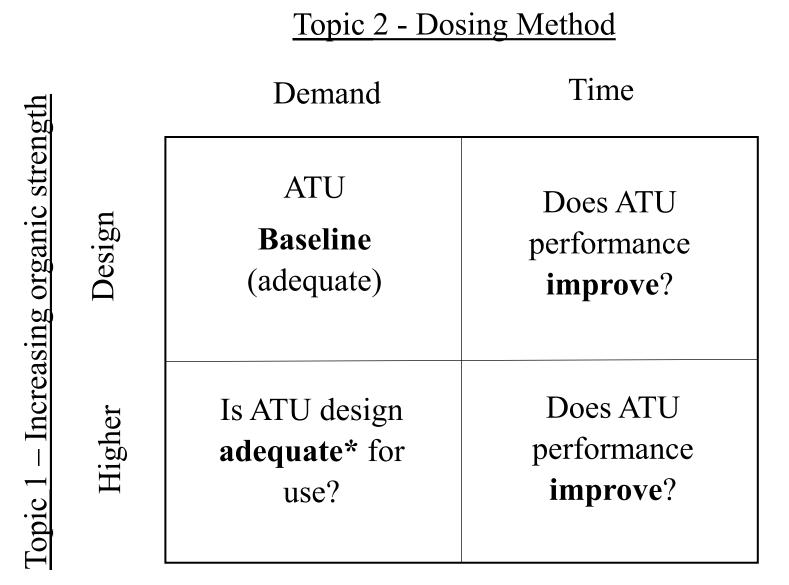
DISCLAIMER

OSSF Research Funding in Texas

- Texas Commission on Environmental Quality (TCEQ)
- Texas On Site Sewage Facility Grant Program (TOGP)
- 4 Feb 2019 TCEQ issues RFGA Solicitation No: <u>582-19-93772.</u>
- 29 Mar 2019 TAMU submits 3 proposals: ATU, LPD, and Reuse
- 2 May 2019 TCEQ notifies TAMU all 3 proposals selected for funding!

TCEQ - RFGA Research Topics

Eligible Projects (4)


- 1) Adequacy of Current ATU Designs with Higher Strength Wastewater
- 2) ATU Demand vs. Time Dosing
- Low-Pressure Dose Systems with Various Configurations
- 4) Black Water Non-Potable Reuse

ATU Research Approach

*Adequate = meets NSF/ANSI Standard 40 effluent requirements

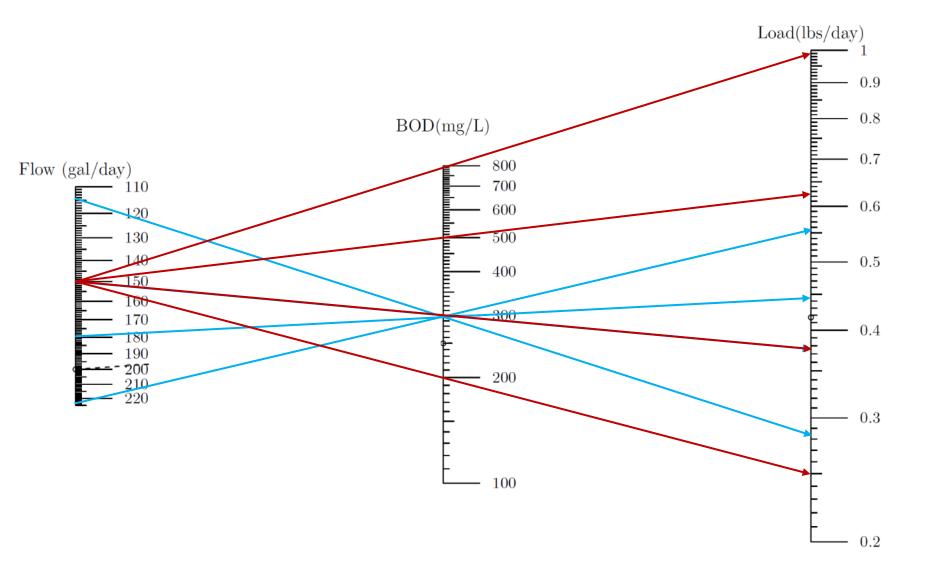
Flow reductions described in current Texas OSSF Rules

 Chapter 285.91(3)
Wastewater Usage Rate; effects of water-saving devices

TYPE OF FACILITY	USAGE RATE	USAGE RATE
	GALLONS/DAY	GALLONS /DAY
	(Without Water Saving	(With Water
	Devices)	Saving Devices)
Single family dwelling (one or two	225	180
bedrooms) - less than 1,500 square feet.		

 Chapter 285.81(b) Adjusted Hydraulic Flow; effect of graywater reuse on % hydraulic flow reductions

Table I. Potential Percent Reduction


Sewage sources entering the graywater reuse system or combined reuse system	Potential percent reduction to the effluent disposal system required in §285.33 of this title
Clothes-washing machine only	20
Showers, bathtubs, hand- washing lavatories, and sinks that are not used for the disposal of hazardous or toxic ingredients	30
Clothes-washing machines, showers, bathtubs, hand- washing lavatories, and sinks that are not used for the disposal of hazardous or toxic ingredients	50

Organic strength described in current Texas OSSF Rules

 Chapter 285.81(d) Adjusted Organic Strength; effect of graywater reuse

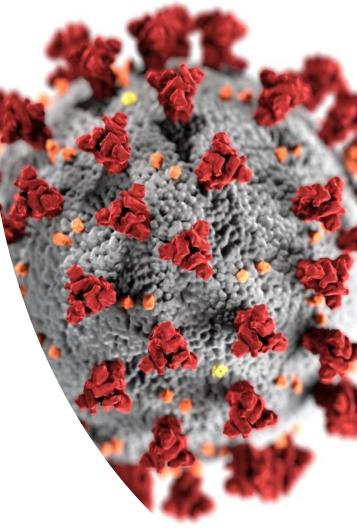
Sewage sources entering a graywater reuse system or a combined reuse system	Five-day Biochemical Oxygen Demand (BOD ₅) design strength for sewage entering on-site sewage facilities milligrams per liter (mg/l)
Clothes-washing machine only	375
Showers, bathtubs, hand- washing lavatories, and sinks that are not used for the disposal of hazardous or toxic ingredients	430
Clothes-washing machines, showers, bathtubs, hand- washing lavatories, and sinks that are not used for the disposal of hazardous or toxic ingredients	600

Flow (gal/day) x Concentration (mg/L) x 0.00000834 = Load (lbs/day)

Aerobic Treatment Unit Evaluation Plan – Parallel ATU's – Demand vs Time Dose						
Experiment*	Flow	Concentration	Load			
	[gal/day]	[mg/L]	[lb/day]			
1	225	300	0.56			
2	180	375	0.56			
3	157	430	0.56			
4	4 112		0.56			
5	112	800	0.75			
6	157	900	1.18			
7	180	1000	1.50			
8	225	1000	1.88			

*Six weeks per experiment:

2-week equilibration, 2-week sampling, 2-week data review and prep for next


COVID-19 Effect upon OSSF research Timeline and progress

Timeline

- 16 March 2020 AgriLife suspends all field and lab activity
- 15 May 2020 AgriLife resumes 25% activity
- 1 Jun 2020 AgriLife resumes 50% activity
- 1 Sep 2020 AgriLife resumes 75% activity
- 1 Dec 2020 AgriLife resumes 100% activity

OSSF Research Progress under COVID conditions

- Upgraded infrastructure at RELLIS OSS Research Facility
- Developed synthetic high strength waste formulation
- Procured equipment, instrumentation, and supplies
- Completed ATU installation

- A. Wastewater Treatment Plant
- B. Cleanout
- C. Feed Tank
- D. ATU Trash Tank and Pump Tank
- E. ATU-A, STD40 Dosing

H1

H3

- F. ATU-B, Equalized Dosing
- G. Low Pressure Drip Septic Tank
- H. Low Pressure Drip Drainfield
- I. ATU
- J. Membrane Bio Reactor (MBR)

Н

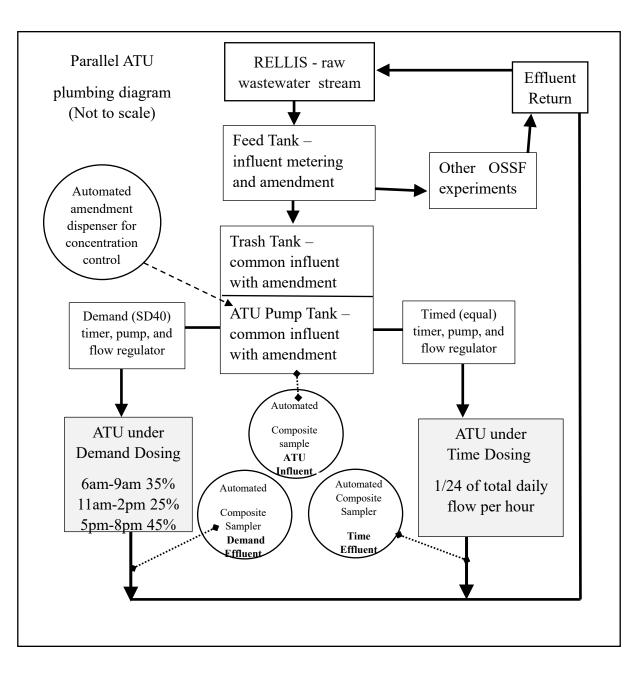
H2

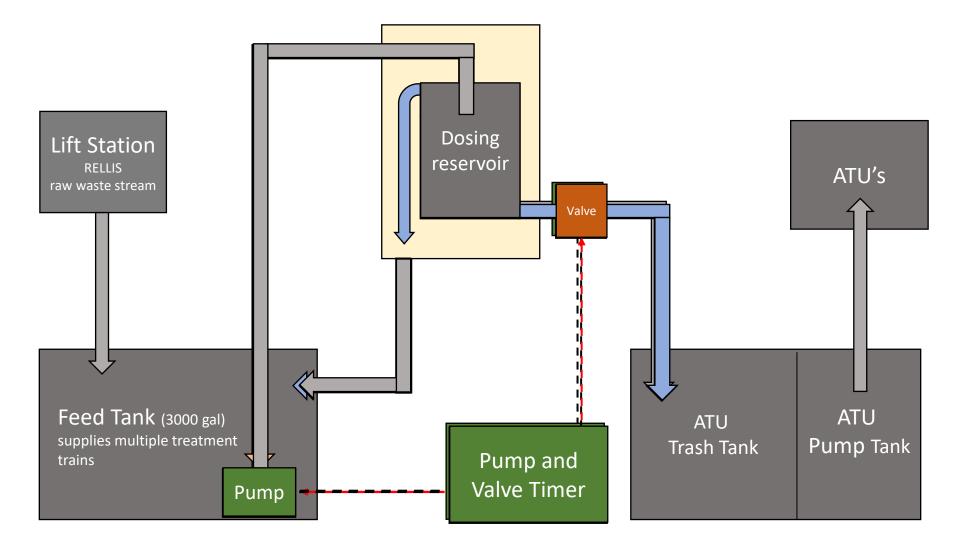
H4

185

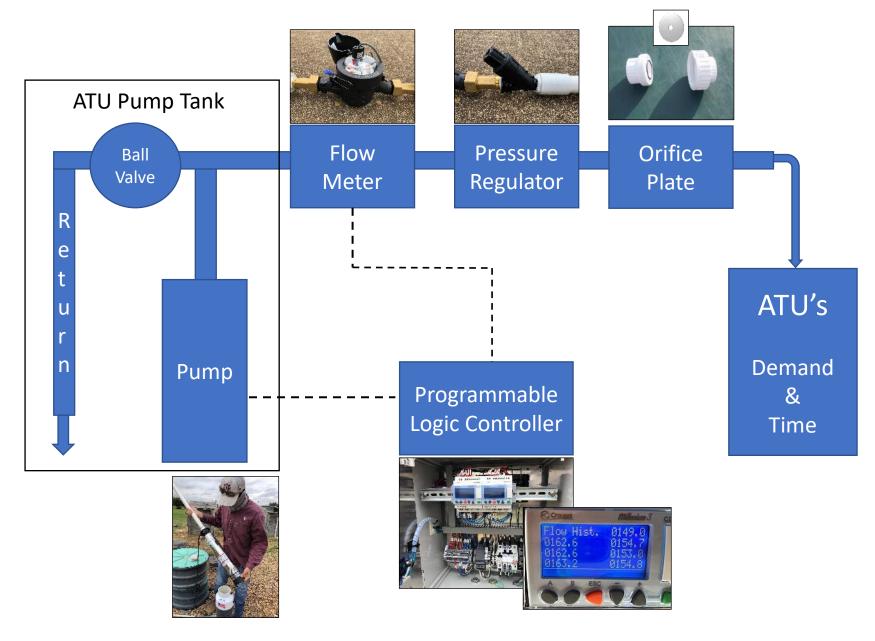
E&F

154

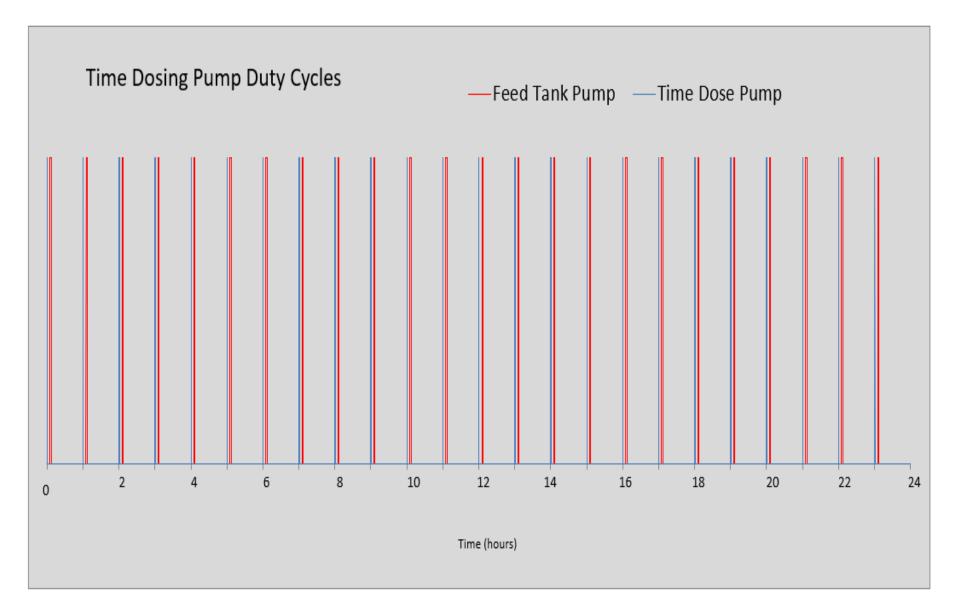

G



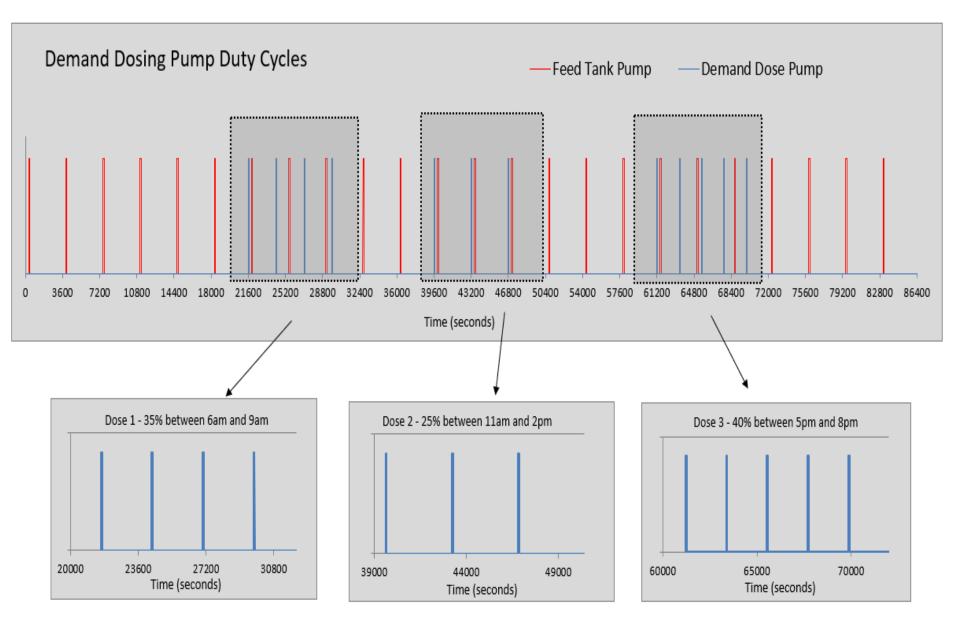
В

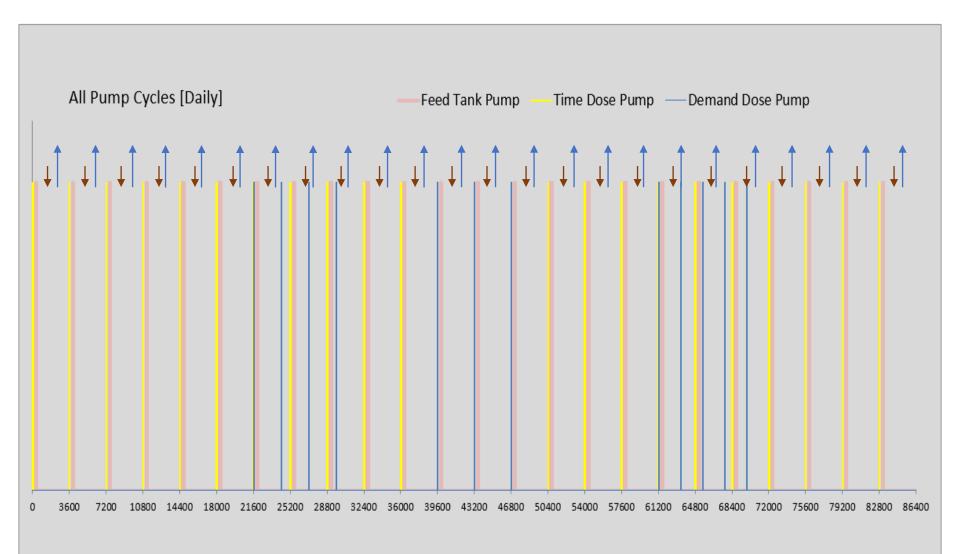


Influent volume/dose regulation

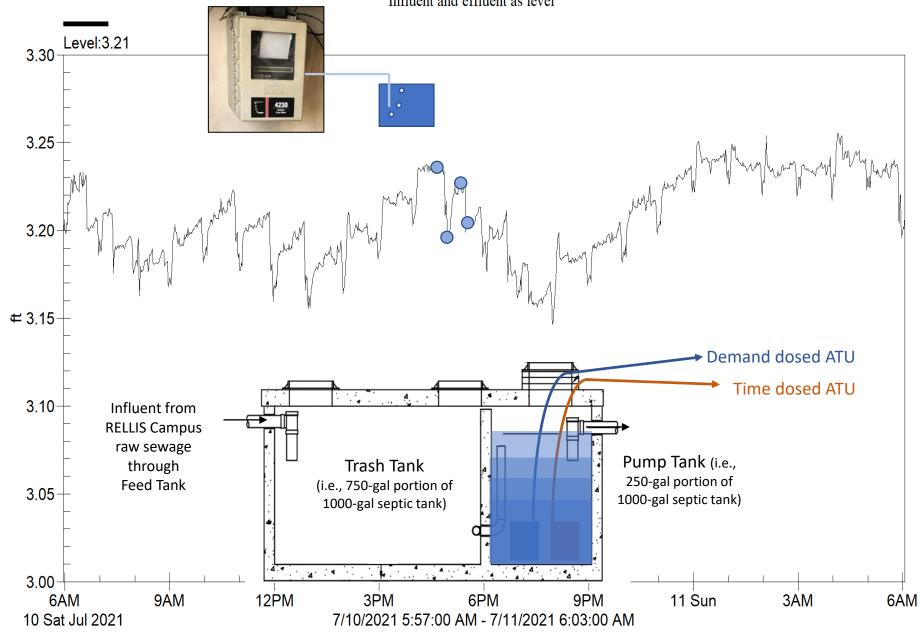


Flow control – Pump timer with orifice plate




Pump schedules and coordination

Pump schedules and coordination



Pump schedules and coordination

Time (seconds)

ATU Pump Tank Influent and effluent as level

PROBLEMS!

2272

Synthetic High-Strength Waste

- Constituent characterization
- Measured mass/volume
- BOD₅ determination
- Standard curve

Modified, grain-based animal feed

- Carbohydrate source (starches)
- Protein source (veg)
- Vitamin, mineral source
- Trace element source
- Increases BOD₅ and TSS
- Low cost
- Local availability
- Storage and handling
- Consistent composition
- Moderately high BOD₅

Issues

- Settling
- Slow breakdown

Modified, grain-based animal feed

- Carbohydrate source (starches)
- Protein source (veg)
- Vitamin, mineral source
- Trace element source
- Increases BOD₅ and TSS
- Low cost
- Local availability
- Storage and handling
- Consistent composition
- Moderately high BOD₅

Issues

- Settling
- Slow breakdown

- /	
PP LAY CRUMBLE	
Ingredient	% by wt.
Corn	55.00
Soybean meal - 48%	22.00
Calcium carbonate	8.00
Rice bran	7.50
Liquid molasses binder	2.50
Dehydrated alfalfa, 17%	2.00
Corn gluten meal	1.60
Monocalcium phosphate, 21%	0.70
Salt Mix	0.45
Poultry Vitamin Mix	0.15
D-L-Methionine 98%	0.05
Choline chloride	0.05
Total	100.00

Modified, grain-based animal feed

- Carbohydrate source (starches)
- Protein source (veg)
- Vitamin, mineral source
- Trace element source
- Increases BOD₅ and TSS
- Low cost
- Local availability
- Storage and handling
- Consistent composition
- Moderately high BOD₅

Issues

- Settling
- Slow breakdown

Grade A, Low Heat Skim Milk Powder

- Carbohydrate source (lactose)
- Protein source
- Mineral source
- Increases BOD₅ and TSS
- Cost
- Availability
- Storage and handling
- Consistent composition/quality
- Relatively high BOD₅
- Liquid delivery (measurement)

Problems

- High viscosity (i.e., foaming)
- Volume determination at high concentrations

Grade A, Low Heat Skim Milk Powder

- Carbohydrate source (lactose)
- Protein source
- Mineral source
- Increases BOD₅ and TSS

TABLE	IAverage	Composition	of	Milk
	and Dried	Skim Milk		

		Dried	Solution Containing		
Constituent	Whole Milk (%)	Skim Milk (%)	1% Milk (p.p.m.)	0.1% Dried Skim Milk (p.p.m.)	
Fat	3.9	0.9	390	9	
Protein	3.2	36.9	320	369	
Lactose	5.1	50.5	510	505	
Ash	0.7	8.1	70	81	
Total Solids	12.9	96.4	1,290	964	
Organic Solids	12.2	88.3	1,220	883	

TABLE II.—Comparison of Oxygen Demands of Solutions Determined Chemically and Biologically

Type of Solution	C.O.D.	(p.p.m.)	B.O.D. (p.p.m.)		
Solution	Total	68%	20-day	5-day	
Skim Milk Lactose	$1,052 \\ 516$	$715 \\ 351$	$1,056 \\ 519$	636 431	
Casein	604	412	639	327	

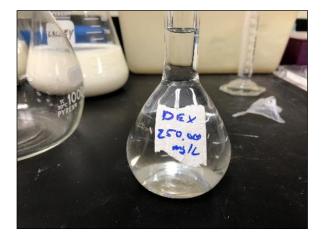
Grade A, Low Heat Skim Milk Powder

- Carbohydrate source (lactose)
- Protein source
- Mineral source
- Increases BOD₅ and TSS
- Cost
- Availability
- Storage and handling
- Consistent composition/quality
- Relatively high BOD₅
- Liquid delivery (measurement)

Problems

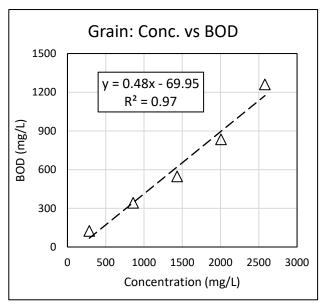
- High viscosity (i.e., foaming)
- Volume determination at high concentrations

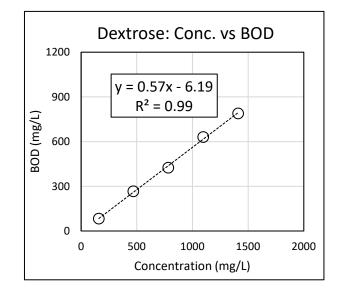
Dextrose (derived from corn starch)

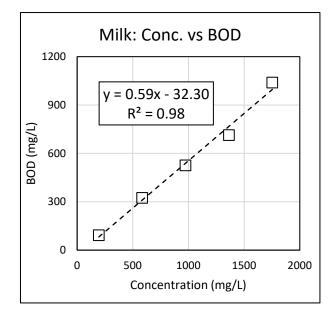

- Carbohydrate source (simple sugar)
- Low cost
- Availability
- Storage and handling
- Consistent composition/quality
- Relatively high BOD₅
- Liquid delivery (measurement)

Problems

• Volume determination at high concentration


Amendments – standard curve development


Material	Conc.	BOD ₅	
Dextrose 100	160	83	
Dextrose 300	470	267	
Dextrose 500	783	425	
Dextrose 700	1097	631	
Dextrose 900	1410	789	
Milk 100	195 92		
Milk 300	585	324	
Milk 500	974	526	
Milk 700	1364	714	
Milk 900	1754	1040	
Grain Mix 100	287	124	
Grain Mix 300	860	342	
Grain Mix 500	1433	547	
Grain Mix 700	2007	834	
Grain Mix 900	2580	1260	



Amendments – standard curve development

Amendments in wastewater

Sample Description	BOD ₅ (mg/L)	Mean	St. Dev.	Less WW	Mean
Wastewater (ATU Pump Tank) – Rep 1	109				
Wastewater (ATU Pump Tank) – Rep 2	121				
Wastewater (ATU Pump Tank) – Rep 3	105				
Wastewater (ATU Pump Tank) – Rep 4	100				
Wastewater (ATU Pump Tank) – Rep 5	100	107	9		
Wastewater + Dextrose 300 – Rep 1	438			331	
Wastewater + Dextrose 300 – Rep 2	437			330	
Wastewater + Dextrose 300 – Rep 3	438			331	
Wastewater + Dextrose 300 – Rep 4	434			327	
Wastewater + Dextrose 300 – Rep 5	436	437	2	329	330
Wastewater + Milk 300 – Rep 1	561			454	
Wastewater + Milk 300 – Rep 2	572			465	
Wastewater + Milk 300 – Rep 3	566			459	
Wastewater + Milk 300 – Rep 4	543			436	
Wastewater + Milk 300 – Rep 5	555	560	11	448	452
Wastewater + Dextrose:Milk (70:30) 300 – Rep 1	450			343	
Wastewater + Dextrose:Milk (70:30) 300 – Rep 2	460			353	
Wastewater + Dextrose:Milk (70:30) 300 – Rep 3	476			369	
Wastewater + Dextrose:Milk (70:30) 300 – Rep 4	478			371	
Wastewater + Dextrose:Milk (70:30) 300 – Rep 5	484	470	14	377	363
Feed Tank Wastewater – Rep 1	287				
Feed Tank Wastewater – Rep 2	293				
Feed Tank Wastewater – Rep 3	308				
Feed Tank Wastewater – Rep 4	284				
Feed Tank Wastewater – Rep 5	295	293	9		
Feed Tank Wastewater + Grain Mix 300 – Rep 1	805			512	
Feed Tank Wastewater + Grain Mix 300 – Rep 2	773			480	
Feed Tank Wastewater + Grain Mix 300 – Rep 3	756			463	
Feed Tank Wastewater + Grain Mix 300 – Rep 4	737			444	
Feed Tank Wastewater + Grain Mix 300 – Rep 5	748	764	27	455	470

CONT.

1 L

Pre.

yvalanche G

0 0

Rollen Hox

Results (preliminary) – influent BOD₅ increase from SHSW amendments

Ехр	Average* Raw Sewage Influent BOD ₅ [mg/L]	Average SHSW Amended Influent BOD₅ [mg/L]	SHSW Amended Influent Percentage increase from Raw Sewage Influent
1	56	230	311%
2	82	163	99%
3	123	403	228%
4	120	201	68%
5	122	190	56%
6	261	461	77%
7	210	548	161%
8	136	650	378%
9	60	956	1493%
10	344	2943	756%

* Average of 8 samples over 2-week experimental period (6 for Experiment 3)

Results (preliminary) – BOD₅

	Common Influent (Demand and Time Dose)			Demand D	ose Effluent	Time Do	se Effluent	
ЕХР	Flow Reduction [% of normal]	Average* Influent Flow [gal/day]	Average Influent BOD ₅ [mg/L]	Average Influent BOD ₅ Load [lb/day]	Average Effluent BOD ₅ [mg/L]	Average Effluent BOD ₅ Reduction	Average Effluent BOD ₅ [mg/L]	Average Effluent BOD ₅ Reduction
1	100% -	225	230	0.43	42	82%	42	82%
2	100% -	225	163	0.31	21	87%	18	89%
3	80% ↓	180	403	0.60	21	95%	21	95%
4	70% ↓	158	201	0.26	20	90%	22	89%
5	70% -	157	190	0.25	29	85%	26	86%
6	50% ↓	111	461	0.43	23	95%	12	97%
7	50% -	112	548	0.51	25	95%	31	94%
8	50% -	114	650	0.62	25	96%	19	97%
9	50% -	113	956	0.90	15	98%	12	99%
10	50% -	114	2943	2.80	(34)	>99%	31	>99%

* Average of 8 samples over 2-week experimental period (6 for Experiment 3)

Results (preliminary) – TSS

Common Influent (Demand and Time Dose)				Demand Dose Effluent		Time Dose Effluent	
ЕХР	Flow Reduction [% of normal]	Average Influent Flow [gal/day]	Average Influent TSS [mg/L]	Average Effluent TSS [mg/L]	Average Effluent TSS Reduction	Average Effluent TSS [mg/L]	Average Effluent TSS Reduction
1	100% -	225	53	40	25%	52	2%
2	100% -	225	74	21	72%	12	84%
3	80% ↓	180	138	18	87%	18	87%
4	70% ↓	158	131	9	93%	20	85%
5	70% -	157	347	26	93%	24	93%
6	50% ↓	111	506	12	98%	11	98%
7	50% -	112	1886	18	>99%	19	>99%
8	50% -	114	4468	9	>99%	15	>99%
9	50% -	113	4115	8	>99%	26	>99%
10	50% -	114	(17530)	22	>99%	28	>99%

* Average of 8 samples over 2-week experimental period (6 for Experiment 3)

Summary

- Installed parallel ATU treatment trains at TAMU RELLIS OSSF
- Developed synthetic high-strength waste formulation
- Developed precision flow and dosing procedures
- Implemented 10, 2-week experiments, 8 sample measurements
- Lowered flow to 50% of normal; simulating conservation/reuse
- Raised BOD₅ concentration >300 mg/L; simulating high strength
- Both Demand and Time ATUs met BOD₅/TSS 30:30 or >90% reduction
- Differences in Demand and Time dosed ATU response minimal
- Visual difference between Demand and Time dosed TSS
- Formal analysis pending

QUESTIONS? and Thank You!

RESEARCH EXTENSION

AgriLife OSSF Research Team

June Wolfe III - ATU

jwolfe@brc.tamus.edu

(254) 774-6016

Anish Jantrania - REUSE

ajantrania@brc.tamus.edu

(254) 774-6014

Gabriele Bonaiti - LPD

g.bonaiti@tamu.edu

(979) 862-2593

Ryan Gerlich – OSSF Management

rgerlich@tamu.edu

(979) 458-4185

Ryan Gerlich