MATT DOWLING TOWN OF CHARLESTOWN, RI

Disclaimer The comments and opinions made in this presentation are those of the presenter and not of NOWRA or the Mega-Conference sponsors

CHARLESTOWN ONSITE WASTEWATER MANAGEMENT PROGRAM

Town of Charlestown, R.I.
 On-Site Wastewater
 Management Program

Water Resource and Environmental Protection

MATT DOWLING, CHARLESTOWN, RI

- URI Geology/Natural Resource Science
- 23 years project coordination experience in groundwater hydrogeology, groundwater remediation, and watershed management
- Licensed RIDEM OWTS Designer and Installer
- Licensed RIDEM Class IV Soil Evaluator and Soil
- Qualified RIDEM Wetlands Professional
- Developed Charlestown's OWTS program 15 years of employment
- Established the Charlestown Laboratory of Applied Watershed Management
- Leverage experience and community interest to bring in over \$5M in outside funding to the Town
- Website: <u>https://charlestownri.gov/wastewater-management</u> Email: <u>Mdowling@charlestownri.gov</u>

CHARLESTOWN

Horseshoe Falls, Charlestown, RI

Ninigret and Green Hill Ponds. Charlestown, RI

Using the Town of Charlestown RI as an example:

- Issues that communities face from OWTS
- Benefits of OWTS management
- Implement OWTS Management Program
 - 1. Identify Target area(s) and implement OWTS inspections
 - 2. Gather and track OWTS data
 - 3. Community Engagement
 - 4. Enforcement
 - 5. Outside funding
 - 6. Research

CHARLESTOWN – A COMMUNITY RELIANT ON OWTS

- A coastal community located on the South Shore of RI
- Situated on three coastal lagoons and associated barriers and headlands
- All potable water is groundwater primarily from private wells

- Local economy is dependent on the Town's coastal geography
 - Multiple beaches, coastal recreation, coastal industry, rentals and high value vacation properties
- > 2/3 of dwelling units located within the Salt Ponds Region Watersheds

CHARLESTOWN – ISSUES OUR COMMUNITY FACES RELATING TO OWTS

- Charlestown relies solely on groundwater for drinking water and on septic systems (OWTS) for wastewater management – Has densely developed areas (>10 units/Ac)
- Groundwater nitrogen (N) concentrations exceed the drinking water standard, posing public health risks and negatively affecting water quality of coastal ponds^{2,3}
- 80% of nitrogen (N) in groundwater in densely developed areas of Charlestown originates from septic systems¹
- Research has identified a significant relationship between density of septic systems and groundwater NO₃-N concentrations
- Town allocated fiscal resources to implement program ~\$125,000/year program operating budget

- EPA Established the Voluntary National Guidelines fro management of Onsite and Clustered Wastewater Treatment Systems
- Five models for OWTS management increasing in oversight
 - Model 1 Homeowner Awareness
 - Model 2 Maintenance Contract
 - Model 3 Operating Permit*
 - Model 4 Responsible Management Entity (RME) Operation and Maintenance
 - Model 5 RME Ownership

Voluntary National Guidelines for Management of Onsite and Clustered (Decentralized) Wastewater Treatment Systems

- Starting in 2008 Model 3 EPA
 Management Model "OWTS
 Operating Permit"
- OWTS owners are responsible for required maintenance and operation of OWTS,
- Town approved 3rd party OWTS service providers,
- EPA designed five models increasing in regulatory oversight from 1-5,
- We found "Model 3" works well in our jurisdiction - minimizes perception of over regulation and keeps operating costs down with high success

Charlestown OWTS Operating Permit No. 01-043

10 7 10

1. IDENTIFY TARGET AREA AND IMPLEMENT OWTS INSPECTIONS

- Delineate area of interest based on public health and environmental risks
- Use local GIS coverages to assess infrastructure, sensitive environmental resources, and narrow target areas
- Under enabling legislation, implement OWTS inspection requirements to require a "First Maintenance Inspection" and O&M requirements for Advanced OWTS.

First maintenance inspections establish baseline of OWTS type, use and conditions

MANAGEMENT

2. GATHER AND MANAGE OWTS DATA

- All OWTS have a first inspection to determine baseline conditions, type, age, size, condition, location, use profile, etc.,
- Pumping is determined and schedule set for next inspection,
- Inspection data is entered into a database,
- After follow up inspections, we now understand the conditions, use profiles and accumulation rate of material in the Septic Tank,
- This information is utilized to establish required inspection frequency for all OWTS.

MANAGEMENT

Long Term = 3-5 years

1. Implement OWTS Management Ordinance or Local Zoning Regulation

-Could include a Nutrient Loading requirement as an overlay district

- 2. Public outreach education and support is BEYOND ESSENTIAL!
- 3. Inventory every OWTS in the district via an inspection requirement
- -Identifies Cesspools, Substandard systems and Failed Systems to manage in short term
- 4. Seek out low interest loan funding to assist homeowners upgrades
- 5. Develop an OWTS database
- 6. Working with GIS is KEY (must have a parcel database)
- 7. Focus on Critical Zones
- 8. Start to Manage I/A Systems
- 9. Branch out to manage other sources of Nutrients

3 – COMMUNITY ENGAGEMENT

- 1. Engage residents in meaningful watershed education programing and experiences.
- 2. Field based hands-on training for resource protection practitioners.
- 3. Share findings and methods widely.

4 – ENFORCEMENT

- A necessary, but sometimes unpleasant part of our job as regulators
- Implement Enforcement Actions per established code
- Key component is guidance toward compliance – non punitive when applicable
- Established Municipal Court per enabling legislations, other methods available

5 – LEVERAGE PROGRAMING FOR OUTSIDE FUNDING

Use programing as in-kind / fiscal contributions to implement water resource mitigation programs

A Nitrogen reducing OWTS is installed to replace a failing metal tank system located less than 100 feet from a coastal wetland under the Charlestown EPA SNEP Grant

Our program over the last 8 years has received nearly \$2M in grant funding to implement OWTS Management and OWTS modernization where needed

6 – CONDUCT RESEARCH

Conduct research based on data collected to further the science of OWTS and Watershed Management

- water	MDPI	SW231			
Article		0	· • • • • • •		
Influence of Season, Occupancy Pattern, and Technology		Geospat	Geospatial Modeling Suggests Threats		
on Structure and Composition of Nitrifying and		from St	from Stormy Seas to Rhode Island's		
Denitrifying Bacterial Communities in Advanced		nom St	and beas to renote		
Nitrogen-Removal Onsite Wastewater		Coastal	Septic Systems		
Treatment Systems				Author's	personal copy
			wling≊, George W. Loomis⊐, S	Water Air Soil Pollur (2020) 221-543	
Bianca N. Ross ^{1,} * ⁽²⁾ , Sara K. Wigginton ¹ , Alissa H. Cox ¹ (Iose A. Amador ¹	Water Air Soil Pollut (2018) 229:389 https://doi.org/10.1007/s11270.018.4029.z	CrossMar	5)	https://doi.org/10.1007/s11270-020-04911-5	
Department of Natural Resources Science, University of Rhoe			urees Science, University of R		
sarawigginton@gmail.com (S.K.W.); alibba@uri.edu (A.H.C.); New England Opeits Wastewater Tesining Contex University			ba@uri.eau (corresponding (Citers for
gloomis@uri.edu			aste water Management Divis mdowling @charlestownri.or	Effectiveness of Advanced Nitro	ogen-Removal Onsite
 Correspondence: bpeixoto10@uri.edu; Tel.: +1-401-874-2902 	Correspondence: bpeixoto10@uri.edu; Tel.: +1-401-874-2902 User-Based Photometer Analysis of Effluent fr		om Advanced Wastewater Treatmer		s in a New England Coastal
Received: 23 July 2020; Accepted: 26 August 2020; Published: 28	ater Treatment Systems	us@uri.edu	Community		
Abstract: Advanced onsite wastewater treatment systems	Bianca N. Ross . George W. Loomis , Kevin P. Hovt		Durham University, South Ro	Pianas N. Boss Karin P. Hort, Connes W.	
(BNR) to mitigate the threat that N-rich wastewater poses	Jose A. Amador		ac.uk	Loomis · Jose A. Amador	
denitrification. We used high-throughput sequencing to e			urces science, University of 1 ador@uri.ed u		
nitrifying and denitrifying bacterial communities in advance			632		
from 44 advanced systems. We used QIIME2 and the phyl	Received: 10 August 2018 / Accepted: 12 November 2018		preparing for dimate char	Received: 12 June 2020 / Accepted: 26 October 2020 © Springer Nature Switzerland AG 2020	
in taxonomy and alpha and beta diversity as a function of	Springer Nature Switzenand AO 2018		forms will have on below-si		
pattern (seasonal vs. year-round use), and season (June v diversity index for amoA were significantly influenced by	Abstract Advanced nitrogen-removal onsite wastewa-	(slope = 1, intercept = 0). Our results show the	t lv on onsite wastewater tre	Abstract Wastewater is a major source of nitrogen (N to groundwater and coastal waterbodies, threatenin	(13.2), followed by FAST (13.4), AX20 (14.9), and Norweco (33.8). Compliance with the state's regulatory
nosZ diversity significantly. Season also had a strong influer	ter treatment systems (OWTS) are used to reduce total nitrogen (N) levels in domestic wastewater. Maintaining	photometer-based analysis reliably estimates inorgani N (ammonium and nitrate) concentration in field an	search describing how thes	both environmental and public health. Advanced N	standard for effluent TN concentration (19 mg N/L) was
amoA communities, and had less influence on nosZ commu influence on nosZ communities. Nitrosospira and Nitrosom	system performance requires regular monitoring and in	laboratory settings. Photometer-based analysis of th	model was used to examine	removal onsite wastewater treatment systems (OWTS are used to reduce effluent N concentration; however	 highest for RX30 systems (78%), followed by AX20 (73%), FAST (67%), and Norweco (0%), Occupancy
advanced N-removal OWTS, and the predominant genera	situ rapid tests can provide an inexpensive option for assessing treatment performance. We used a portable	sum of inorganic N species also consistently approx mated the total N concentration in the final effluent from	ents, category 1-4 hurrican	few studies have assessed their effectiveness. We eval	1- pattern did not affect effluent TN concentration. Varia-
and Acidooorax. Differences in taxonomy for each gene gene patterns, highlighting the possible importance of season ar	photometer to measure ammonium and nitrate concen-	the systems. A cost-benefit analysis indicated that the	on geographic location, coa	advanced N-removal OWTS in Charlestown, Rhod	tion in TN concentration was driven by ammonium and nitrate for all technologies, and also by temperature for
amoA and nosZ, respectively. Knowledge gained from this s	trations in final effluent from 46 advanced N-removal OWTS, sampling each site at least three times in 2017,	photometer is a more cost-effective option than havin samples analyzed by commercial environmental testin	s, the number of OWTS thr	Island, USA for 3 years. We quantified differences i	n FAST and pH for Norweco. Median daily (g N/day) and
connections between microbial communities and OWTS per in a way that maximizes N removal.	To assess photometer accuracy, we compared measure-	laboratories after analysis of 8 to 33 samples. A portable	2,000 in a category 1 hurric	effectiveness as a function of N-removal technology an home occupancy pattern (seasonal vs. year-round use	 annual (kg N/yr) N loads were significantly higher for vear-round (5.3 and 2.3) than for seasonal (3.7 and 0.41)
	ments made using the photometer with those determined by standard laboratory methods using linear regression	photometer can be used to provide reliable, cost effective measurements of ammonium and nitrate cor	from a category 4 hurrican	and examined the relationship between wastewate	er systems, likely due to differences in volume of waste-
Keywords: onsite wastewater treatment systems; amoA; no nitrogen removal	analysis and a two-tailed t test to compare regression	centrations, and estimates of total N levels in advance	f sea level rise expected ov	properties and TN concentration. RX30 systems pro duced the lowest median TN concentration (mg N/L	 water treated. Our results suggest that advanced N- removal OWTS vary in their compliance with the state
	parameters to those for a perfect linear relationship	N-removal OWTS effluent. This method can be a viable tool for triaging system performance in the field, helpin	red can cost homeowners fi	2	regulatory standard for effluent TN and can withstand
	Electronic supplementary material The online version of this	to identify systems that are not functioning properly an	L	Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007	tiveness. Nevertheless, systems used year-round do pro-
1. Introduction	article (https://doi.org/10.1007/s11270-018-4039-z) contains supplementary material, which is available to authorized users.	may need to be adjusted or repaired by an operation an maintenance service provider in order to meet treatmen	1	/s11270-020-04911-5.	duce a higher daily and annual N load than seasonally-
Nitrogen pollution from wastewater poses a serious thr water body. A dwared one is a wastewater treatment custome	B N Ross ()·K P Howt · I A Amador	standards.		B. N. Ross (E) K. P. Hoyt J. A. Amador	used systems.
N from wastewater—are often required in areas vulnerable t	Laboratory of Soil Ecology and Microbiology, University of Rhode Jeland 1 Greenhouse Rd, Kingston, R102881, USA	Keywords Onsite wastewater treatment system -		Rhode Island, 1 Greenbuse Rd., Kingston, RI 02881, USA	Keywords Onsite wastewater treatment systems -
vary in their design, but they all have an oxic zone to facilitat	e-mail: bpeixoto10@uri.edu	Wastewater · Rapid test · Photometer · Nitrogen ·		e-mail: operxolo (Ole-unitedu	Wastewater · Nitrogen · Biological nitrogen removal
	K D Hart	Regression analysis		K. P. Hoyt	
Water 2020, 12, 2413; doi:10.3390/w12092413	e-mail: kevin_hoyt@uri.edu			e-mail: kevin_hoyt@uri.edu	1 Introduction
	J. A. Amador	1 Introduction		J. A. Amador e-mail: jamador@uri.edu	Effluent from onsite wastewater treatment systems
	e-mail: jamador@uri.edu	Advanced nitrogen-removal onsite wastewater trea		G. W. Loomis	(OWTS) is an important source of nitrogen (N) to coast-
	G. W. Loomis New England Onsite Wastewater Training Center, University of	ment systems (OWTS) are used to mitigate the impa-	L .	New England Onsite Wastewater Training Center, University of Rhode Island, 102 Coastal Institute, 1 Greenhouse Rd., Kineston	f limiting nutrient in coastal ecosystems, increased inputs
	Rhode Island, 102 Coastal Institute, 1 Greenhouse Rd., Kingston, RI 02881, USA	gen (N) is a limiting nutrient in coastal watershed		RI 02881, USA e-mail: gloomis@uri.edu	of N to groundwater and poorly flushed coastal systems promote eutrophication, which results in anovia that
	e-mail: gloomis@uri.edu	increased N inputs from wastewater promot		Browney mreen	promote cutopineation, which results in allocia that
	Published online: 23 November 2018	2 Spring	r // // //	Published online: 05 November 2020	2 Springer

RESULTS – AFTER 15+ YEARS OF IMPLEMENTATION

- 10,000+ inspections conducted
- Currently 6,331 Systems Permitted and Tracked
- Over 500 cesspools replaced
- 313 failing systems identified over last 10 years, average 26 per year (~2% of inspections), managed, tracked and upgraded
- >\$2M disbursed in 1% loans for failing system upgrades
- Other watershed management spinoff projects
- Over \$2M in grant funding for OWTS infrastructure modernization
- Partnerships built; Research laboratory established

New England Onsite Wastewater

Training Program

Laboratory of Soil Ecology & Microbiology University of Rhode Island

Rhode Island

Website: https://charlestownri.gov/wastewater-management Email: Mdowling@charlestownri.gov