

Dominic Mercier, P.Eng M.A.Sc.

Challenges of Gravity distribution in Septic Systems

The comments and opinions made in this presentation are those of the presenter and not of NOWRA or the Mega-Conference sponsors

- 1. Theory of subsurface dispersal
- 2. Impacts of bad (or good) distribution on septic systems
- 3. Gravity distribution: key design objectives
- 4. Distribution methods: characteristics and limitations
- 5. Questions

Theory of subsurface dispersal systems (SSDS)

Subsurface dispersal : <u>The concept of Hydraulic Loading rate</u>

The design hydraulic loading rate is the maximum volume of effluent (gal) per unit of surface (ft²) that a soil can sustainably absorbs in a day (d). Sometimes referred to a soil Long Term Acceptance Rate.

Designing using loading rates (gal/ft².d) implicitly demands for uniform distribution of effluent over the entire surface provided

Not providing this = overloading !

This is why effluent distribution should be a critical design criteria

Impacts of bad (or good) distribution on septic systems

Impacts of bad (or good) distribution on septic systems

Impacts of soil (contact area) hydraulic overloading?

- Premature clogging of the bed (accelerated biomat development)
- Reduced life expectancy (fast reduction of soil acceptance rate leading to failure)
- Increased risks of effluent ponding, surfacing and backups (major health and safety issue and costly damages)
- Increased risks of water table contamination (not enough vertical separation to treat sufficiently)

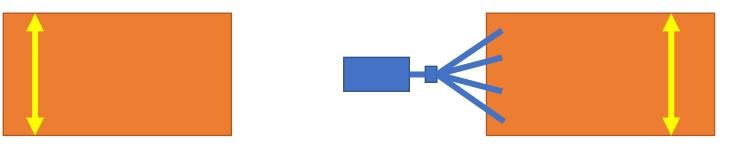
Impacts of bad (or good) distribution on septic systems

Most common causes of hydraulic overloading ?

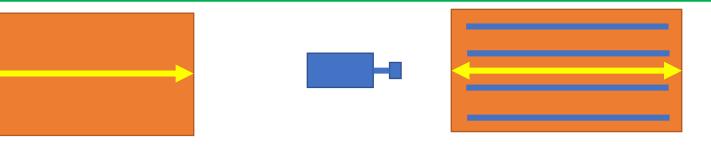
i.e.exceeding the soil hydraulic loading rate (HLR) or long term acceptance rate (LTAR)

- Underestimating the design flow
- Overestimating the soil infiltration capacity (bad soil evaluation, bad identification of a limiting layer, bad selection of HLR, too deep, etc.)
- Or...we can do everything right, but bad <u>DISTRIBUTION OF EFFLUENT</u> will cause overload of the contact area

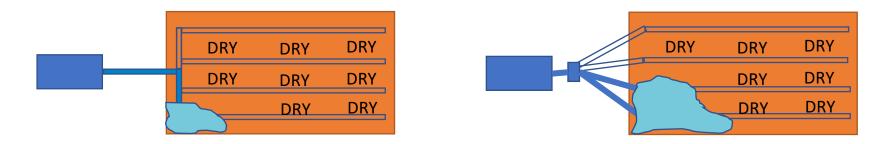
This is how gravity works:


- Gravity always pulls downward;
- Water takes the path of less resistance and offers very little resistance to change in direction;
- Velocity at the septic tank outlet is very slow and results in very little momentum. Often effluent only travels short distances in distribution pipes
- A slight difference in level will change direction of flow (settling, freeze/thaw, slope, etc.)

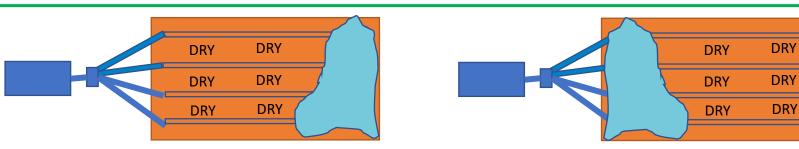
Uniform distribution needs to achieve 2 essential objectives:


#1: LATERAL DISTRIBUTION

• Distribution of effluent over the width of the system (in each lateral or trenches)

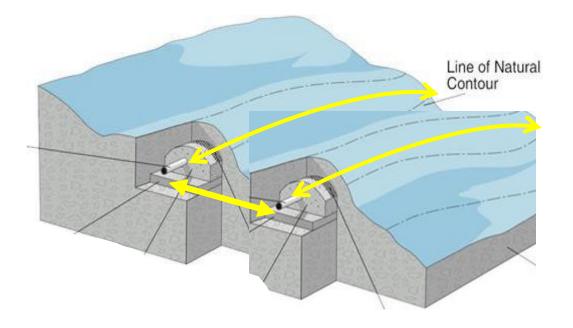

#2: LONGITUDINAL (length wise) DISTRIBUTION

- Distribution of effluent over the length of the system.
- This requires sufficient volume and momentum (movement energy), things rarely found in gravity systems.


EXAMPLES OF IMPERFECT LATERAL DISTRIBUTION

• Header or D-box not perfectly level or has shifted over time or has uneven outlet or pipe level, header has "blind fittings", etc.

EXAMPLES OF IMPERFECT LONGITUDINAL (length wise) DISTRIBUTION


• Inconsistency in pipes slopes, limited volume and/or momentum entering the laterals

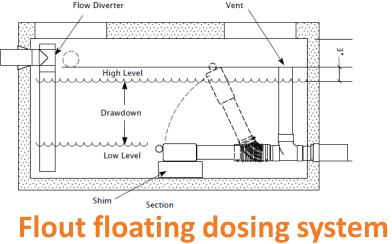
TO KEEP IN MIND : Distribution of effluent must be a **2-dimensions dispersal**

- Lateral or width wise (even distribution between the laterals)
- Longitudinal or length wise (even distribution over the length of distribution pipe)

Distribution methods ranked

BEST: Low pressure distribution (non-gravity method)

- Uniform distribution over the entire contact area usually within 10% between proximal and distal orifices
- Controlled volume per dose promotes resting periods and replenishes oxygen levels
- Self-cleaning velocities maintain long lasting performances of distribution (cleaning ports provided if needed)
- Pressure overcome risks of uneven level of pipes from settling, freeze/thaw, installation mistakes, etc.
- Can be used in all types of topography
- More expensive


Distribution methods ranked

<u>Better</u>: Surge box or flush type devices (siphons, floating dosing systems, flush valves, tipping buckets, etc.)

- Uses gravity but with momentum and volume improving lateral and longitudinal effluent distribution
- Water surges reduces the risks associated with uneven level of pipes from settling, freeze/thaw, installation mistakes, etc.
- Intermittent dosing promotes resting periods
- Can be accessed for inspection and cleaning if needed
- Surge velocities reduces clogging of pipes and need for maintenance
- They are dynamic but still passive, no electricity

Distribution methods – Surge/Flush devices

Siphon

SeptiSurge Dynamic Fluid Manifold

Distribution methods ranked

<u>Limited</u>: D-boxes, Flow Splitters, Splitter tees, etc.

- Uses strictly gravity with no momentum or volume resulting in limited longitudinal distribution
- Can achieve proper lateral distribution if perfectly level (almost impossible to maintain overtime). Usually very susceptible to change in level resulting in impacts on lateral distribution.
- D-box can be combined with adjustable weirs. Good option only if they are inspected regularly and adjusted when needed.
- Devices are accessible and can be cleaned.
- They are passive, no electricity

Distribution methods – D-box, Flow Splitters, etc.

Flow Splitter / Splitter Tees

D-box

Distribution methods ranked

Bad: Pipe headers (use of tees and elbows to split effluent evenly)

- Uses strictly gravity with no momentum or volume resulting in very limited longitudinal distribution
- Impossible to provide perfect level. A slight difference in the header or pipe level immediately impact lateral and longitudinal distribution.
- Use of blind fittings in headers is close to useless (intermediate tees in header feeding a lateral)
- Not accessible.
- The most inexpensive method (as much inexpensive as it is inefficient)
- Passive, no electricity

Distribution methods – Pipe headers

Suggested reading

Water Air Soil Pollut (2008) 191:55–69 DOI 10.1007/s11270-007-9606-7

A Comparison of Gravity Distribution Devices Used in On-Site Domestic Wastewater Treatment Systems

T. Patel • N. O'Luanaigh • L. W. Gill

On-site Wastewater Treatment: Investigation of Rapid Percolating Subsoils, Reed Beds and Effluent Distribution

ONSITE INSIGHTS

Sara Heger, PhD, is a researcher and instructorwith the Onsite Sewage Treatment Program in the Water Resources Center at the University of Minnesota, She is also a certified designer and service provider. Send questions for Sara to editorigonateinstallercom

It's Time for Tough Talk About Gravity Distribution

Systems are sized assuming even distribution along drainfield lines. How often do the results match the assumption? By Sara Heger

info@enviro-step.ca

Questions

Dominic Mercier, P.Eng M.A.Sc.