

Attenuation and Mobilization of Phosphorus in Nitrogen Removing Biofilters Treating Domestic Onsite Wastewater

Mian Wang^{1,2}, <u>Fanjian Zeng^{1,2}</u>, Zahra Maleki Shahraki^{1,2}, Caitlin Asata², Meghan Oates²,

Arif Reza², Xinwei Mao^{1,2*}

¹ Department of Civil Engineering, Stony Brook University

² New York State Center for Clean Water Technology

2023 Onsite Wastewater Mega-Conference

The opinions and statements made by the presenter are not that of NOWRA or the Mega-Conference sponsors

Outline

- Introduction
- Research questions and objectives
- Field study
- P attenuation in nitrification layer
- P attenuation in denitrification layer
- Summary and future works

Introduction

Source and pollution problem

65.42 kt P/year need to be treated by OWTS in US

FAR BEYOND

The figure was modified from Drizo, 2019.

Dodds, Walter K., et al. "Eutrophication of US freshwaters: analysis of potential economic damages." (2009): 12-19.

https://www.dreamstime.com/eutrophication-process-explanation-water-pollution-stages-outline-diagram-eutrophication-process-explanation-water-

image250885246

P transformations in septic systems and subsurface

5

Nitrogen Removing Biofilters (NRBs)

Configuration of a **lined** nitrogen removing biofilter (stars represented the sampling locations)

7

Configurations of NRBs

FAR

The configurations (lined, unlined, box) of NRBs

BEYOND Gobler, Christopher J., et al. "Removing 80%–90% of nitrogen and organic contaminants with three distinct passive, lignocellulose-based on-site septic systems receiving municipal and residential wastewater." *Ecological Engineering* 161 (2021): 106157.

8

Research questions and objectives

Research questions

- 1. Can NRBs effectively remove P from septic tank effluent (STE)?
- 2. How much of the P can be attenuated or leached from each layer within NRBs?
- 3. How would environmental/operation conditions change impact P fate and transport?
- Objectives
 - 1. Evaluate long-term P removal performance in field NRBs with various configurations.
 - 2. Investigate P attenuation and leaching potential in a) newly installed and aged nitrification sand filters, and b) woodchip and woodchip/sand mixed denitrification

filters

The research workflow for P attenuation and remobilization in NRBs

Field study – influent and effluent P levels in NRBs

configurations of field NRBs

Site number	Configuration	Installation time		
1	Lined	Apr. 2021		
2	Lined	Mar. 2021		
3	Lined	Aug. 2019		
4	Lined	May 2019		
5	Lined	Mar. 2018		
6	Box	Feb. 2020		
7	Box	Apr. 2018		
8	Unlined	Apr. 2021		
9	Unlined	Mar. 2021		
10	Unlined	Jan. 2019		
11	Unlined	Apr. 2018		

FAR

BEYOND

Average influent and effluent P levels measured during 18 months of sampling

EPA (1992) recommended TP \leq 50 µg/L in a stream where it enters a lake/reservoir

Field study – Overall P removal efficiency (PRE)

The influent and effluent range of TP measured over the period of 18 months (June 2021-December 2022)

Site number	Configuration	Installation time	PRE (%)**	Average (%)	STD
1	Lined	Apr. 2021	50.4		
2	Lined	Mar. 2021	95.7		
3	Lined	Aug. 2019	55.5	72.6	20.1
4	Lined	May 2019	89.9		
5	Lined	Mar. 2018	71.6		
6	Box	Feb. 2020	84.8	95 G	1 1
7	Box	Apr. 2018	86.4	05.0	1.1
8	Unlined	Apr. 2021	65.4		
9	Unlined	Mar. 2021	77.6	67.0	67
10	Unlined	Jan. 2019	66.2	07.9	0.7
11	Unlined	Apr. 2018	62.3		

*BDL = Below detection limit (0.5 mg P/L)

** PRE = $\left(\sum_{each month}^{18} \frac{(\text{Influent} - \text{Effluent}) \times 100}{\text{Influent}}\right) \times \frac{1}{18}$

Field study – P removal by each treatment layer

BEYOND

Field study – P removal by each treatment layer

Site	Configuration	Installation	Nitrification	Denitrification	Total PRE (%)	
number	conngulation	time	layer PRE (%)	layer PRE (%)		
1	Lined	Dec. 2021	38.03	95.45	97.18	
2	Lined	Dec. 2021	60.53	99.67	99.87	
3	Lined	Mar. 2021	45.71	92.11	95.71	
4	Lined	Apr. 2019	-42.65 Leac	bing 56.70	38.24	
5	Lined	Aug. 2019	-43.75	28.99	-2.08	
6	Lined	Mar. 2018	12.66	34.78	43.04	
7	Box	Dec. 2022	94.48	-11.11	93.87	
8	Box	Apr. 2018	2.53	84.42	84.81	
9	Box	Dec. 2021	55.47	29.51	68.61	
10	Box	Feb. 2020	27.21	83.18	87.76	
11	Box	Dec. 2022	70.42	-14.29	66.20	
12	Unlined	Mar. 2021	23.33	68.12	75.56	
13	Unlined	Mar. 2018	49.57 Hudr	n/a	n/a	
14	Unlined	Apr. 2021	-205.77 close	76.73	28.85	
	Unlined	Sept. 2021	93.24	26.67	95.05	

PRE by various NRBs

(Apr. 2023 – Aug. 2023) 14

Nitrification layer – experiment design

Nitrification layer – source of materials

Sampling location (left) and profiles (right) within the 5-year-old NRB system in MASSTC

Sand	Туре	pН	Fe (mg/g)	Al (mg/g)	Ca (mg/g)	Mg (mg/g)	Mn (mg/g)	
C33	New	5.65	4.64	12.39	1.27	0.44	0.16	
Northeast	Aged	6.33	13.34	21.05	3.97	2.00	0.15	
Southwest	Aged	6.83	7.42	17.45	1.09	1.02	0.09	
Southeast	Aged	6.30	3.86	13.20	1.33	0.50	0.08	

Characterization of new and aged sand

Nitrification layer – column setup

			Summary of operational stages				
		Influent	Stage	Operation time (d)	Influent	HLR gal/(d·ft²)	Flow pattern
0-1" 1-2" 0-1" 1-2" 1-2"			1	46	Real STE	1.2 (designed)	6 doses per day
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Down flow unsaturated	2	46	Synthetic storm water	35.3 (heavy rain)	Continuous
6-7" 6-7" 7-8" 8-9" 8-9" 8-9" 8-9"			3	90	Real STE	0.6 (actual)	6 doses per day
Aged sand	New sand		4	21	Synthetic	8.8 (light/moder	Continuous
Schematic view of setup for the aged and new sand columns				storm water	ate rain)		

FAR BEYOND

FAR BEYOND

Nitrification layer – sorption capacity and mass balance

FAR

REYOND

Denitrification layer (on-going)

Batch sorption experiment setup

FAR BEYOND

Conclusions and future works

Conclusions

- 1. A wide range of PRE (50% ~ 90%) was observed in long-term operating NRBs.
- 2. Nitrification sand layer of an NRB can temporarily attenuate P from STE, and the majority of attenuated P could be leached out at environmental-relevant conditions (e.g., rain/flood).
- 3. Preliminary work revealed the denitrification layer (i.e., woodchip or woodchip/sand mixture) could provide additional P attenuation capacity of the NRB.

On-going and Future works

- 1. Investigate the fate and transport of P in denitrification layer in column experiments.
- 2. Develop P removal module and estimate its longevity based on the P dynamics in the NRBs.

Acknowledgement

NYS Center for

Clean Water Technology

- Department of Civil Engineering, Stony Brook University
- New York State Center for Clean Water Technology

• Funding source:

New York State Department of Environmental Conservation

- CCTW Website: https://www.stonybrook.edu/cleanwater/
- CCWT Twitter: https://twitter.com/nysccwt

Department of Environmental Conservation

FAR BEYOND

Thank you!

Speaker: Fanjian Zengemail: Fanjian.zeng@stonybrook.eduAdvisor: Dr. Xinwei Maoemail: Xinwei.Mao@stonybrook.eduGroup website: http://you.stonybrook.edu/xinwei/

