Treatment of Winery Wastewater with Gravel Bed Vertical Flow Constructed Wetlands

Katelyn Skornia, Younsuk Dong, Umesh Adhikari, Steven Safferman

Sponsored by the Michigan Craft Beverage Council
Presentation Outline

- Overview of Wineries and Wastewater Challenges
- Gravel Bed Vertical Flow Constructed Wetland
 - Previous Applications
 - Experimental Design
- PO4Sponge
 - Overview
 - Experimental Design
- HYDRUS CW2D Model
- Results
- Conclusions and Future Work
Michigan Wineries

45th Parallel: Same latitude as Bordeaux, Burgundy, and Rhone Valley¹

148 wineries making Michigan 5th in the nation for wine production²

>1.7 million tourists per year²

2.1 billion in economic activity in 2017³

3 million gallons of wine per year²

47% increase in production over the last 5 years²

Wine Making Process and Wastewater Production

- Wastewater produced: 7 gallons per gallon wine\(^4\)
- Wastewater is produced throughout the process, primarily during crush and cleaning\(^5\)
- Peak flows in late fall/early winter, minimal flows during “off-season” \(^5\)
- High strength\(^5\)
 - BOD\(_5\) > 2,000 mg/L
 - Total Nitrogen > 10 mg/L
 - Total Phosphorus > 5 mg/L

Challenges with Winery Wastewater

- High concentrations of BOD_5, Total Nitrogen, Total Phosphorus
- Seasonal, intermittent production
- Most Michigan wineries:
 - Located within 25 miles of Lake Michigan
 - Do not have access to public sewers
 - Wineries with access to public sewers are subject to surcharges

Challenges with Winery Wastewater

- Michigan Department of Environment, Great Lakes and Energy (EGLE) recently established loading rate of 50 lbs BOD$_5$/acre/day for land application of wastewater.
- Loading rate is limited to reduce metal mobilization and groundwater contamination.
- High strength wastewater requires substantial land for land application treatment.
- To preserve vineyard space, an alternative on-site treatment method is necessary.
Gravel Bed Vertical Flow Constructed Wetlands (Contactors)

- Subsurface cells filled with gravel: roughing cell, denitrification cell, and polishing cell
- Aerobic & anoxic conditions promote biological treatment
- Wastewater is distributed 1.5 feet below ground level
- Plants were excluded in this study
Contactors

- Demonstrated success for milking facility wastewater
- Observed removal:
 - 92% COD (proxy for BOD$_5$)
 - 91% Ammonia
- Basis for NRCS standard for Gravel Contactors
- Similar cold weather designs by AQUA Treatment Technologies and GeoSyntec Consultants have been installed for sanitary sewage, milkhouse washwater, and greenhouse irrigation leachate water

Calculated surface area requirement of 6.5 ft2 per bottle produced on maximum production day using:

- Organic loading rate established for NRCS Gravel Bed design guide = 462 lb COD/acre/day
- Carbon concentration = 6,000 mg/L COD
- Wastewater production = 7 gallons per gallon of wine
- Bottle of wine = 750 mL
Experimental Design: Carbon & Nitrogen Removal Study

- PVC columns with gravel
 - Actual depth: 4-ft with wastewater inlet 1.5-ft from top
 - Scaled surface area: 4-in diameter
- Loading rate of 462 lb COD/acre/day
- Recycle ratio of 3:1 in Column 1
Experimental Design: Carbon & Nitrogen Removal Study
Phosphorus Removal

Particulate:
- Solid/liquid separation

Soluble:
- Biological
- Precipitation
- Struvite Crystallization
- Soil Sorption
- Media Sorption

Common Sorbents for Media Sorption:
- Limestone
- Furnace Slag
- Iron Filings
- Activated Aluminum
- Nano-Enhanced Iron Foam
PO4Sponge

- Manufactured nano-enhanced iron foam by MetaMateria Technologies, Columbus, OH
- Composed of iron oxide nanocrystals of oxyhydroxide with alumino-silicate bonded porous structure
- Absorption capacity ranging from 20 – 50 mg P/g media resulting from:
 - High adsorption rates
 - Large surface area
 - Increased contact time due to increased porosity
Experimental Design: Phosphorus Removal Study

- PVC Columns, 1.5-in diameter
- Quantity of PO4Sponge recommended by manufacturer
- Treated wastewater from contactor system supplemented with monopotassium phosphate to influent concentration (17.4 mg/L P)
- Received same daily volume as contactor system
Experimental Design: Phosphorus Removal Study

[Images of experimental equipment]
Experimental Design: Operational

Carbon & Nitrogen Removal Study

- Phase 1: Normal Operation
 - Loadings 4x/day at 8am, 11am, 2pm, 5pm
 - Room temperature (68°F)
- Phase 2: Intermittent Loading
 - Loadings 4x/day at 8am, 2pm, 8pm, 2am
 - Room temperature (68°F)
- Phase 3: Cool Down
 - Loadings 4x/day at 8am, 2pm, 8pm, 2am
 - Reduced temperature (50°F)

Phosphorus Removal Study

- Loadings 4x/day at 8am, 2pm, 8pm, 2am
- Room temperature (68°F)
HYDRUS CW2D Constructed Wetland

- Simulates water and solute flow in soil
- Uses the Richards’ Equation for water flow and the advection-dispersion equation for solute flow
- Considers both aerobic and anoxic transformation and degradation processes for organic matter, nitrogen, and phosphorus
- Potential for development of design criteria and operational strategies to maximize the treatment

Results: Carbon & Nitrogen Removal Study

<table>
<thead>
<tr>
<th></th>
<th>Average Influent (mg/L)</th>
<th>Phase 1 Average Effluent (mg/L)</th>
<th>Phase 2 Average Effluent (mg/L)</th>
<th>Phase 3 Average Effluent (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COD (mg/L)</td>
<td>5808 ± 1229</td>
<td>22 ± 13</td>
<td>23 ± 5</td>
<td>20 ± 3</td>
</tr>
<tr>
<td>Total Nitrogen (mg/L N)</td>
<td>33.27 ± 9.21</td>
<td>2.25 ± 0.71</td>
<td>1.78 ± 0.72</td>
<td>1.55 ± 0.30</td>
</tr>
<tr>
<td>Ammonia (mg/L N)</td>
<td>13.71 ± 5.61</td>
<td>BDL*</td>
<td>BDL</td>
<td>BDL</td>
</tr>
<tr>
<td>Nitrate (mg/L N)</td>
<td>4.21 ± 5.35</td>
<td>1.47 ± 0.74</td>
<td>0.95 ± 0.50</td>
<td>0.72 ± 0.48</td>
</tr>
</tbody>
</table>

*BDL: Below Detectable Limits
COD

Influent
• Column 1 Effluent
▲ Column 2 Effluent
× Column 3 Effluent

Days from Start

COD (mg/L)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
Total Nitrogen

Days from Start

Influent
Column 1 Effluent
Column 2 Effluent
Column 3 Effluent
Ammonia

Ammonia - N (mg/L NH₃ - N)

Days from Start

- Influent
- Column 1 Effluent
- Column 2 Effluent
- Column 3 Effluent
Results: Phosphorus Removal Study

- Average Influent: 17.55 ± 0.48 mg/L P
- Average Effluent: 0.036 ± 0.027 mg/L P
Results: Phosphorus Removal Study

![Graph showing phosphorus removal over days from start.](graph_url)
Conclusion

- Robust treatment system that can handle:
 - High strength waste
 - Varying loading concentrations and frequencies
 - Reduced temperatures
- Effluent concentrations are substantially better than septic effluent allowing for conventionally sized drain field
- Reduction in surface area by 80% in comparison to traditional land application
Future Work

- Field demonstration to:
 - Determine additional design and installation considerations
 - Allow producers to observe system maintenance and operational procedures
- Data collection for calibration and validation for HYDRUS CW2D model
Acknowledgements

Sponsor: Michigan Craft Beverage Council

Project Participants:
- Joanne Davidhizar, MSU Extension
- Sarina Ergas, Ph.D., P.E., Department of Civil & Environmental Engineering, University of South Florida
- Geosyntec Consultants
- MetaMateria Technologies

Project Construction:
- Phil Hill
- Steve Marquie

Data Collection:
- Brynn Chesney
- Rachelle Crow
- Kiran Lantrip
- Matt Wholihan
- Corrine Zeff