NOWRA

00

To strengthen and promote the decentralized wastewater industry.

Subsurface Drip for Decentralized Wastewater Dispersal

Soil / Siting Assessment

Best Practices Workshop

NOWRA

00

To strengthen and promote the decentralized wastewater industry.

Presented By:

Tom Ashton R.E.H.S, L.P.S.S., M.A.O.S.E

American Manufacturing Co., Inc.

Presentation Overview

Characteristics / Overview of the Soil Receiving Environment

Loading Rates and Sizing Methodologies: Critical Elements

In-Situ Drip Dispersal The Soil Treatment Unit

4

Wastewater Subsurface Drip Distribution: Peer Reviewed Guidelines for Design, Operation, and Maintenance

EPRI, Palo Alto, CA and Tennessee Valley Authority, Chattanooga, TN: 2004. Author and Principal Investigator, J. Watson P.E.

5

On-Site Wastewater Treatment Systems Manual

EPA/625/R-00/008 Washington, D.C.: 2002)

<u>Chapter 4</u> Treatment Processes and Systems

Chapter 5 Treatment System Selection

Table 5.1 Types of Mass Loadings

Table 5-1. Types of mass loadings to subsurface wastewater infiltration systems.

Mass loading type	Units	Typical loading rates
Hydraulic		
 Daily 	Volume per day per unit area of	Septic tank effluent:
	boundary surface	0.15–1.0 gpd/ft² (0.6–4.0 cm/d)
		Secondary effluent:
		0.15-> 2.0 gpd/ft ² (0.6->8.0 cm/d)
 Instantaneous 	Volume per dose per unit area of boundary surface	1/24–1/8 of the average daily wastewater volume
Contour (Linear)	Volume per day per unit length of boundary surface contour (which can be a critical design parameter in areas with high water tables)	Depends on soil K_{sat}^{a} , maximum allowable thickness of saturated zone, and slope of the boundary surface (see section 5.3)
Constituent		
Organic	Mass of BOD per day per unit area of boundary surface	0 .2–5.0 lb BOD/1000 ft² (1.0–29.4 kg BOD/1000 m²)
Other pollutants	Mass of specific wastewater pollutant of concern per unit area of boundary surface (e.g., number of fecal coliforms, mass of nitrate nitrogen, etc.)	Variable with the constituent, its fate and transport, and the considered risk it imposes

**Hydraulic Loading Rates **Constituent Loading Rates Organic Compliance (Microbial / N / P etc.)

***Boundary Design

The Consortium of Institutes for Decentralized Wastewater Treatment

Decentralized Wastewater Glossary

Decentralized Wastewater Glossary

Compiled by

The Consortium of Institutes for Decentralized Wastewater Treatment

7

National Onsite Wastewater Recycling Association

National Onsite Wastewater Recycling Association

Recommended Guidance for the Design of Wastewater Drip Dispersal Systems

This document is an engineering standard developed by the Technical Practices Committee of NOWRA, accepted by the Board of NOWRA (2006).

Figure 1: Drip Dispersal System Component Train

Chapter 11

Treatment Using Subsurface Infiltration

Chapter 12

Treatment Landscape Drip Dispersal

Robert Siegrist

Decentralized Water Reclamation Engineering

A Curriculum Workbook

DRIP PLACES EFFLUENT INTO the natural soil system

Graphic from "L.D. Hepner *Alternative On-Lot Technology Research / Soil Based Treatment Systems* (Del-VAL Phase 2)"

9

NOTONTO A CONSTRUCTECTED INTERFACE

Drip in situ vs. LPD interface

SINGLE FAMILY HOME application

Drip Dispersal is often the only option /solution on Marginal Sites:

Shallow to Rock / Restriction

Shallow to Wetness

Slow Permeability Material

Shallow Placement

Reduction in Footprint (?)

Commonwealth of Virginia State Board of Health

11

Sewage Handling and Disposal Regulations

12 VAC – 5-610

"Treatment works" means any device or system used in the storage, treatment, disposal or reclamation of sewage or combinations of sewage and industrial wastes, including but not limited to pumping, power and other equipment and appurtenances, septic tanks and any works, including *land*, that are or will be (i) an integral part of the treatment

process or

(ii) used for ultimate disposal of residues

or effluent resulting from such treatment.

§§ 32.1-12 and 32.1-164 of the Code of Virginia.

The <u>Soil Treatment Unit (STU)</u>

- The SITE / SOIL characteristics determine what type of Treatment and Dispersal system is required.
- The STU is the Primary Point of system compliance, with a system design that provides that effluent will not surface, or pollute surface and groundwater resources.
- The STU is always site specific including specification of site delineation, loading rate(s), depths to seasonal / apparent wetness, and the characteristics of Permeability Limiting Features.
- DRIP DISPERSAL SYSTEMS ARE TYPICALLY SPECIFIED
 ON THE MOST SENSITIVE & RESTRICTIVE CONDITIONS

DRAINAGE CLASSES (old approach)

USDA-SCS SOIL DRAINAGE CLASSES

DRAINAGE CLASS	GENERAL DESCRIPTION
Excessively drained	Mottling deeper than 40 inches, very rapid permeability (sands)
Somewhat excessively drained	Mottling deeper than 40 inches, rapid permeability (loamy sands)
Well drained	Mottling deeper than 40 inches
Moderately well drained	Gray mottles (≤2 chroma) between 20 to 40 inches
Somewhat poorly drained	Gray mottles (≤2 chroma) between 10 to 20 inches
Poorly drained	Gray colors (≤2 chroma) and/or red mottles within upper 10 inches with predominantly gray matrix (>60%) below 10 inches
Very poorly drained	Very dark or black surface with gray subsoils

SOURCE: USDA-SCS Maryland State Office (1990).

Depth to "Chroma 2 Mottles"

10" to 20" to 40"

DRAINAGE CLASSES (Current approach)

Moderately well drained. Water is removed from the soil somewhat slowly during some periods of the year. Internal free water occurrence commonly is moderately deep and transitory through permanent. The soils are wet for only a short time within the rooting depth during the growing season, but long enough that most mesophytic crops are affected. They commonly have a *moderately low* or *lower saturated hydraulic conductivity* in a layer within the upper 1 m, periodically receive high rainfall, or both.

DRAINAGE CLASSES (Current approach)

Somewhat poorly drained. <u>Water is removed slowly so</u> that the soil is wet at a shallow depth for *significant periods during the growing season*. The occurrence of internal free water commonly is shallow to *moderately deep* and *transitory to permanent*. Wetness markedly restricts the growth of mesophytic crops, unless artificial drainage is provided. The soils commonly have one or more of the following characteristics: *low or very low saturated hydraulic conductivity, a high water table,* additional water from seepage, or nearly continuous rainfall.

DESIGN BOUNDARIES AND BOUNDARY LOADINGS

Wastewater System design must focus on identifying the critical design **boundaries between System components**, **System /Soil interfaces**, and other places where design conditions abruptly change (*Variable Flow*).

System failure occurs at design boundaries because they are sensitive to hydraulic and mass pollutant loadings.

In a soil based system, determining critical design boundaries is the primary objective of the soil / site evaluation.

Design boundaries may be defined by the rule. Soil infiltrative surfaces, hydraulically restrictive horizons, or zones of saturation are often *critical design boundaries*.

More than one design boundary can be expected in every system, but <u>not all of the</u> identified boundaries will control design.

(1) INFILTRATVE SURFACE Waste Water applied must readily leave trench

(2) VADOSE ZONE Water must move vertically through least permeable soil layer

(3) PERMEABILITY LIMITING FEATURES (PLF) Water reaching a impermeable / slowly permeable layer or Ground water must "leak" and / or move laterally away

(4) RECEIVING ENVIRONMENT / Compliance Boundary is the point where renovated effluent is discharged to the ground or surface water system.

HYDROLOGY OF INDIVIDUAL SEPTIC SYSTEMS

Aerial View

NC STATE

HYDROLOGY OF A LARGE SEPTIC SYSTEM

2 acres, 0.2 gal/(ft² d) = 114 inches per year 8700 GPD

It is all about the Landscape

Site SPECIFIC and REGIONAL

FACTORS INFLUENCING SITE AND SOIL SUITABILITY

TOPOGRAPHY AND LANDSCAPE POSITION

- SOIL PROPERTIES
 - (A) TEXTURE
 - (B) COLOR
 - (C) STRUCTURE (CLAY SOILS)
 - (D) SOIL DEPTH TO RESTRICTIVE HORIZON OR HIGH WATER TABLE
 - (E) DRAINAGE, PERMEABILITY AND INFILTRATION

Site Delineation

Large Flow System

TOTAL Area required may need to be increased by a factor of 1.2 to 2x +

to account for unsuitable / complex topography, separation between zones, conveyance piping, access, etc.

Loading rate, hydraulic:

quantity of water applied to a given treatment component, usually expressed as volume per unit of infiltrative surface area per unit time, e.g., gallons per day per square foot (gpd/ ft^2). PICALLY THE ONLY

Decentralized Wastewater Glossary

Compiled by

The Consortium of Institutes for Decentralized Wastewater Treatment

Effluent Quality?

Peak Daily Design Flow?

Average Flow?

INFILTRATIVE SURFACE

TEXTURE is general guide

TABLE 7-2

RECOMMENDED RATES OF WASTEWATER APPLICATION FOR TRENCH AND BED BOTTOM AREAS (4)(11)(12)^a

Soil Texture	Percolation Rate	Application Rate ^b
	min/in.	gpd/ft ²
Gravel, coarse sand	<1	Not suitable ^c
Coarse to medium sand	1 - 5	0 1.2
Fine sand, loamy sand	6 - 15	0.8
Sandy loam, loam	16 - 30	0.6
Loam, porous silt loam	31 - 60	0.45
Silty clay loam, clay loam ^d	61 - 120	🗘 0.2 ^e

Trench Bottom Loading Rates / EPA 1980 "Perc" MPI

610 SH&DR STE Trench Bottom Loading Rates Increased LOADING RATES for Dispersal

SOIL TEXTURE GROUP	TEXTURE SOIL	TRENCH BOTOM LOADING RATE Gal. / Ft ² / Day		MINUTES Per INCH
	MORPHOLOGY	STE / (Gravity)	STE / (LPD)	
<u>I</u> SANDS	Sand (Sd) Loamy Sand (LSd)	.91 - 76	() .9176	<15
<u>IIA</u> COARSE	Sandy Loam (SdL) Structureless	.6863	.6863	20 - 25
LOAMS <u>IIB</u>	Sandy Loam (SdL) Loam (L) Sandy Clay Loam (SdCL)	.5744	.6154	30 - 45
<u>IIIA</u> FINE	Silt Loam (SiL) Sandy Clay Loam (SdCL)	.428	.5242	50 - 70
LOAMS <u>IIIB</u>	Clay Loam (CL) Silty Clay Loam	.2519	.435	75 – 90
<u>IV</u> CLAYS	Sandy Clay (SdC) Silty Clay (SiC) Clay (C)	.1711	() .3522	90 - 120

Sewage Handling and Disposal Regulations

© 2000 by E. Jerry Tyler, printed with permission.

Decentralized Wastewater Glossary

Compiled by

The Consortium of Institutes for Decentralized Wastewater Treatment

Loading rate, areal: quantity of effluent applied to the footprint of the soil treatment area (or the absorption area of an above-grade soil treatment area) expressed as volume per area per unit time, e.g., gallons per day per square foot (gpd/sq. ft.).

Area or "Footprint" Loading Rate AREA ft² / 2 = Minimum Tubing Length

entralized Wastewater Treatn

	onmental Protec :v	tion	Infilt Loadir	ration 1g Rate
Soil Ch:	aracteristi	28	gal/d	ay/ft ²
	Stru	cture	>30	<30
			mg/l	mg/l
Texture	Shape	Grade	BOD	BOD
COS, S, LCOS, LS		0SG	0.8	1.6
FS, VFS, LFS, LVFS		0SG	0.4	1.0
		0M	0.2	0.6
	The T	1	0.2	0.5
CLS, SL	PL	2,3	0.0	0.0
	PR/BK	1	0.4	0.7
	/GR	2,3	0.6	-1.0
		0M	0.2	0.5
TATE & TRACK	PL	1,2,3	0.0	0.0
FSL, VFSL	PR/BK	1	0.2	0.6
	/GR	2,3	0.4	0.8
		0M	0.2	0.5
	PL	1,2,3	0.0	0.0
L	PR/BK	1	0.4	0.6
	/GR	2,3	0.6	0.8
		0M	0.0	0.2
SIL	PL	1,2,3	0.0	0.0
	PR/BK	1	0.4	0.6
	/GR	2,3	0.6	0.8
		0M	0.0	0.0
8 <i>0</i> 1 01	PL	1,2,3	0.0	0.0
SCL, CL,	PR/BK	1	0.2	0.3
SICL	/GR	2,3	0.4	0.6
		0M	0.0	0.0
80 0 810	PL	1,2,3	0.0	0.0
SC, C, SIC	PR/BK	1	0.0	0.0
	/GR	2.3	0.2	0.3

$ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$						A D	FA
	K-1					Loadin	ig Rate
Structure >30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30 <30	.6		Soil Cha	racteristic	s	gal/d	ay/ft²
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Infiltrative "Tranch Pottom"	//		Strue	ture	>30	<30
Loading Rates The "MODEL" $i = \frac{1}{2} \frac{1}$	Inilitrative Trench Bottom		Texture	Shana	Crada	mg/l BOD	mg/l ROD
Loading Rates The "MODEL"			COS. S.	onape 	OSG	0.26	.53
$\begin{array}{c c} FS, VFS, LFS, & - & 0SG & 0.13 & 33 \\ \hline FS, VFS, LFS, & - & 0M & 0.6 & 0.2 \\ \hline PL & 2.3 & 0.0 & 0.0 \\ \hline PR/BK & 1 & 0.6 & 1.6 \\ \hline PL & 2.3 & 2 & 33 \\ \hline OGR & 2.3 & 2 & 33 \\ \hline OGR & 2.3 & 2 & 33 \\ \hline OGR & 2.3 & 2 & 33 \\ \hline OGR & 2.3 & 2 & 33 \\ \hline OGR & 2.3 & 2 & 33 \\ \hline OGR & 2.3 & 0.0 & 0.0 \\ \hline PR/BK & 1 & 0.6 & 2 \\ \hline OGR & 2.3 & 0.0 & 0.0 \\ \hline PR/BK & 1 & 0.6 & 2 \\ \hline OGR & 2.3 & 0.0 & 0.0 \\ \hline PR/BK & 1 & 0.6 & 2 \\ \hline OGR & 2.3 & 2 & 28 \\ \hline OGR & 2.3 & 0.0 & 0.0 \\ \hline PR/BK & 1 & 0.6 & 2 \\ \hline OGR & 2.3 & 2 & 28 \\ \hline OGR & 2.3 & 0.0 & 0.0 \\ \hline PR/BK & 1 & 0.6 & 2 \\ \hline OGR & 2.3 & 0.0 & 0.0 \\ \hline PR/BK & 1 & 0.6 & 2 \\ \hline OGR & 2.3 & 0.0 & 0.0 \\ \hline OGR & 2.3 & 0.0 & 0.0 \\ \hline PR/BK & 1 & 0.6 & 1 \\ \hline OGR & 2.3 & 2 & 26 \\ \hline OGR & 2.3 & 0.0 & 0.0 \\ \hline OGR & 0.0 & 0.0 \\ \hline$	Loading Rates		LCOS, LS				the se
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			FS, VFS, LFS,		0SG	0.13	.33
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			LVFS		014	06	0.2
CLS, SL PL 2.3 0.0 0.0 PR/BK 1 .13 0.23 <					1	.06	16
Image: Sector of the sector			CLS. SL	\mathbf{PL}	2.3	0.0	0.0
✓ GR 2.3 .2 .33 ✓ GR 2.3 .16 .16 PL 1.2.3 0.0 0.0 PR/BK 1 .06 .2 /GR 2.3 .13 .36 ✓ GR 2.3 .13 .36 ✓ GR 2.3 .10 .06 .16 VIE PL 1.2.3 .00 0.0 PR/BK 1 .02 .2 .2 GR 2.3 .2 .2 .2 Area * Footprint" .2 .2 .2 .2 SIL PL 1.2.3 .00 0.0 SCL, CL, PL 1.2.3 .00 0.0 SICL /GR 2.3 .13 .2 // GR 2.3 .13 .2 .2 // GR 2.3 .13 .2 .1			0.00, 00	PR/BK	1	.13	0.23
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓				/GR	2,3	.2	,33
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					0M	.06	.16
Least Permeable Layer PR/BK 1 .06 .2 K-2 .2 .2 .2 .2 .2 K-2 .2 <	$ \begin{array}{c} \bullet \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \bullet \bullet \uparrow \uparrow \uparrow \uparrow \uparrow \bullet \bullet \bullet \uparrow \uparrow \uparrow \uparrow \uparrow \bullet \bullet \bullet \\ \bullet \uparrow \uparrow \uparrow \uparrow$		FSL, VFSL	PL	1,2,3	0.0	0.0
Least Permeable Layer - 0M .06 .166 PL 1,2,3 0.0 0.0 PR/BK 1 1 1 2 /GP 2,3 .2 .2 .2 //GR 2,3 .2 .2 .2 //GP 2,3 .2 .2 .2 //GR 2,3 .1 .1 .1 //GR 2,3 .1 .2 .2 //	, ,		1.56, 41.56	PR/BK	1	.06	.2
Least Permeable Layer PL 1,2,3 0,0 0,0 K-2 2 2 2 2 2 K-2 2 2 2 2 2 2 K-2 2 2 2 2 2 2 2 K-2 2 <t< th=""><th colspan="2">_<u></u></th><th></th><th>7DV</th><th>2,3 0M</th><th>.13</th><th>.30</th></t<>	_ <u></u>			7DV	2,3 0M	.13	.30
Least Permeable Layer L 1.L 1.2 1.4,3,5 0.3 2 K-2 .2		4		PI	1.2.3	0.0	.100
K-2 2 2 2 2 K-2 2 2 2 2 2 Area "Footprint" SIL PL 1,2,3 0.0 0.0 K-2 2 2 2 2 2 2 Area "Footprint" SIL PL 1,2,3 0.0 0.0 0.0 K-2 2 <th>Least Permeable Layer</th> <th></th> <th>L</th> <th>PR/BK</th> <th>1</th> <th>0.0</th> <th>(2)</th>	Least Permeable Layer		L	PR/BK	1	0.0	(2)
K-2 2 SIL Image: PL 1,2,3 0.0 0.0 PR/BK 1 1.13 2 2 Area "Footprint" 0M 0.0 0.0 SIL PL 1,2,3 0.0 0.0 PR/BK 1 .13 .2 .2 GR 2,3 .2 .26 .26 SIL PL 1,2,3 0.0 0.0 SIL SICL /GR 2,3 .13 .2 SIL SICL /GR 2,3 .13 .2 SIL PL 1,2,3 0.0 0.0 SICL /GR 2,3 .13 .2 PR/BK 1 0.0 0.0 .1 SICL PL 1,2,3 0.0 0.		-		/GR	2,3	.2	.26
K-2 2 SIL PL 1,2,3 0.0 0.0 Area "Footprint" Area "Footprint" 0M 0.0 0.0 Loading Rates 0M 0.0 0.0 0.0 SIL 0M 0.0 0.0 SCL, CL, PL 1,2,3 0.0 0.0 SIL 0M 0.0 0.0 SCL, CL, PR/BK 1 .06 .1 SIL 0M 0.0 0.0					0M	0.0	0.2
Area "Footprint" I	K-2 2		SIL.	PL	1,2,3	0.0	0.0
Area "Footprint" - 0M 0.0 0.0 Loading Rates PL 1,2,3 0.0 0.0 SICL /GR 2,3 .1 .2 Trench Bottom / 3 SICL /GR 2,3 .1 .2 SCL, CL, PR/BK 1 .06 .1 SICL /GR 2,3 .13 .2 PR/BK 1 .00 0.0 SC, C, SIC PL 1,2,3 0.0 0.0 Mark Output Output 0.0 0.0 SC, C, SIC PL 1,2,3 0.0 0.0 Mark Output Output 0.0 0.0 SC, C, SIC PL 1,2,3 0.0 0.0 Joint Joint Joint 0.0 0.0 Joint Joint Joint Joint 0.0			SIL	PR/BK	1	.13	.2
Area Footprint 0M 0.0 0.0 Loading Rates SICL PL 1,2,3 0.0 0.0 Trench Bottom / 3 SICL 0M 0.0 0.0 SCL, CL, PR/BK 1 .066 .1 SICL /GR 2,3 .13 .2 0M 0.0 0.0 0.0 SC, C, SIC PL 1,2,3 0.0 0.0 //GR 2,3 .00 0.0 0.0				/GR	2,3	.2	.26
Loading Rates SCL, CL, IL	Area Footprint			PI	UM 1.2.3	0.0	0.0
Loading Rates SICL /GR 2,3 .13 .2 Trench Bottom / 3 Sick PL 1,2,3 0.0 0.0 Sc, C, SIC PR/BK 1 0.0 0.0 Order PR/BK 1 0.0 0.0			SCL, CL,	PR/BK	1,2,3	.06	.1
Trench Bottom / 3 - 0M 0.0 0.0 SC, C, SIC PL 1,2,3 0.0 0.0 PR/BK 1 0.0 0.0 /GR 2,3 .06 0.1	Loading Rates	vater	SICL	/GR	2,3	.13	.2
Trench Bottom / 3 SC, C, SIC PL 1,2,3 0.0 0.0 SC, C, SIC PR/BK 1 0.0 0.0 /GR 2,3 .06 0.1					0M	0.0	0.0
Irench Bottom / 5 PR/BK 1 0.0 0.0 //GR 2,3 .06 0.1	Trough Battom / 2		SC C SIC	PL	1,2,3	0.0	0.0
/GR 2,3 .06 0.1	irench Bottom / 3		50, 0, 510	PR/BK	1	0.0	0.0
				AGK	2,3	.06	0.1

613 AOSS REGS Pressure Trench Bottom Loading Rates

SOIL TEXTURE GROUP	TEXTURE SOIL	TRENCH BOTOM LOADING RATE Gal. / Ft ² / Day				MINUTES Per INCH
	MORPHOLOGY	STE / (LPD)	TL - 2 NSF 40	TL-3 10 / 10		
<u>I</u> SANDS	Sand (Sd) Loamy Sand (LSd)	.9176	1.8 – 1.53	3.0 - 2.33	3 x	<15
<u>IIA</u> COARSE	Sandy Loam (SdL) Structureless	.6863	1.4- 1.3	2.00–1.75		20 - 25
LOAMS <u>IIB</u>	Sandy Loam (SdL) Loam (L) Sandy Clay Loam (SdCL)	.6154	1.2 – .9	1.5 – 1.13		30 - 45
<u>IIIA</u> FINE	Silt Loam (SiL) Sandy Clay Loam (SdCL)	.5242	.862	1.0 – .78	2x	50 – 70
LOAMS <u>IIIB</u>	Clay Loam (CL) Silty Clay Loam	.435	.5844	.7256	+/-	75 – 90
IV CLAYS	Sandy Clay (SdC) Silty Clay (SiC) Clay (C)	.3522	.425	.532		90 – 120

Soil Group

I.

Π

Ш

IV.

30

ANAEROBIC EFFLUENT Areal Loading Rates

0.6-0.4

0.4-0.3

0.3-0.15

0.15-0.05

UENT ATEAT LUAUTING	Rales
<u>LTAR (area basis) (gpd/ft²)</u>	Buritage for a longer for a Dando for a longer for longer for a longer for a longer for longer for a longer for a lon
	<u>Mid- Point</u>

.5

.35

.22

.1

North Carolina Geology

SOIL GROUPS BY TEXTURE
Broad ranges due to structure / consistence
Loading Rates assigned by evaluator

- (A) SOIL GROUP I SANDY TEXTURE SOILS. The sandy group includes the sand and loamy sand soil textural classes and shall be considered SUITABLE with respect to texture.
- (B) SOIL GROUP II COARSE LOAMY TEXTURE SOILS. The coarse loamy group includes sandy loam and loam soil textural classes and shall be considered SUITABLE with respect to texture.
- (C) SOIL GROUP III FINE LOAMY TEXTURE SOILS. The fine loamy group includes silt, silt loam, sandy clay loam, clay loam, and silty clay loam textural classes and shall be considered PROVISIONALLY SUITABLE with respect to texture.
- (D) SOIL GROUP IV CLAYEY TEXTURE SOILS. The clayey group includes sandy clay, silty clay, and clay textural classes and shall be considered PROVISIONALLY SUITABLE with respect to texture.

31

PRETREATED EFFLUENT Areal Loading rates

NORTH CAROLINA DEPARTMENT OF ENVIRONMENT AND NATURAL RESOURCES DIVISION OF ENVIRONMENTAL HEALTH ON-SITE WATER PROTECTION SECTION

AREA

DRIP

INNOVATIVE WASTEWATER SYSTEM APPROVAL

RATES INNOVATIVE WASTEWATER SYSTEM NO: IWWS-93-1-R6B

FOR:

American Perc-Rite® Subsurface Drip System, Aerobic

	LT	<u>Mid-Point</u>		
Soil Group	NSF-40	TS-I	TS-II	TS-2
Sd I.	1.0-0.6	1.2-0.8	1.5-0.8	1.15
L II.	0.6-0.4	0.8-0.5	0.8-0.6	7
CL III.	0.4-0.15	0.6-0.2	0.6-0.2	4
C IV.	0.15-0.05	0.2-0.05	0.2-0.05	12

Special Site Evaluation / Hydraulic Assessment required when:

- * Loading rate is greater than midpoint of the range of GROUP I III Soils
- * GROUP IV Soils proximity
 - * When require by Administrative Authority / >1500 GPD

FIGURE 3-1

POTENTIAL EVAPORATION VERSUS MEAN ANNUAL PRECIPITATION (4)

(inches)

"PET" positive in many regions

+ 10" Precip per Year DULLES

AREAL Inches per Week

	Footprint DRIP	Inches Per Week	
	gal./ft2/day		
Trench .51 gal/ft ² /day	0.170	1.909	> 99" per Year
	0.148	1.662	
	0.125	1.404	
Trench .3 gal/ft ² /day	0.100	1.123	> 58" per Year
	0.075	0.842	

WATER BALANCE

Compiled by

The Consortium of Institutes for Decentralized Wastewater Treatment

Loading rate, linear:

quantity of effluent applied along the length of a lateral, trench or bed, typically expressed as volume per unit length per unit time (e.g. gallons per foot per day).

Volume (GALLONS) per UNIT Length of trench, bed, tubing etc.

Encourage conditions of unsaturated flow / enhanced treatment

CALCULATIONS Drip Dispersal

- 25,000 GPD \div .15 Gal./Ft.²/D Areal = 166,667 Ft² area required
 3.83 acres 1.68 in. / Week
- 166,667 Ft² area required \div 2' spacing = <u>83,333 linear feet of tubing required</u>
- .15 Gal./Ft.²/D × 2' spacing = .3 Gal./Lin. Ft./Day
- 25,000 GPD ÷ .3 Gal./Lin. Ft. Tubing /Day = <u>83,333 linear feet of tubing</u> required

Based on indicated Zone Size in linear feet of Tubing, delineate into Landscape

Fig. 12.4 Illustration of the rhizosphere and water movement is a segment of drip tubing

"(*Note*: the boundaries on water movement shown are sharp and linear but in reality they are irregular and less distinct.)"

Robert L. Siegrist

Decentralized

Engineering

A Curriculum Workbook

Water Reclamation

Siegrist 2017

Deringer

37

38

Decentralized Wastewater Glossary

Compiled by

The Consortium of Institutes for Decentralized Wastewater Treatment

2007

Loading rate, instantaneous:

quantity of effluent discharged to a unit area of the infiltrative surface during a dosing event expressed as volume per unit time, e.g., gallons per minute per square foot (gpm/ft²).

How effluent is applied to the soil

DOSING REGIME (Dose Volume / Frequency)

.01 GMP x 10 minutes = .1 gal per dose (12.8 oz)

CIDWT Glossary 2007

<u>Flow Equalization</u>: system configuration that includes sufficient effluent storage capacity to allow for uniform flow to a subsequent component despite variable flow from the source; (CITWT GLOSSARY)

Decentralized Wastewater Glossary

Compiled by

The Consortium of Institutes for Decentralized Wastewater Treatment

KEYWORDS

Variable Source (in) Flow

Sufficient Effluent Storage

Uniform (out) Flow to a subsequent, downstream Component

<u>Dosing, timed</u>: configuration in which a specific volume of effluent is delivered to a component based upon a prescribed interval, regardless of facility water use; (CITWT GLOSSARY)

Water Movement Through Soil

- Wet to dry
- From large pores to small pores
 - Capillary Action
- Water moves radially until saturated
- At saturation gravity moves water down

Design of Drip Disposal Systems For Wastewater Treatment and Disposal

D.J. Osborn, J.R. Harmen SSSNC (1993)

Clay

NETAFIM

Sand

Loam

Soil Texture/ Porosity / Structure dictate <u>INSTANTANEOUS</u> Dose Larger Networks may require larger dose volumes for equal distribution Restrictive sites require smaller instantaneous doses

POROSITY

•<u>Porosity</u> refers to that portion of the soil that is not occupied by solid material (mineral or organic). Porosity is a function of texture of the soil and structure of the soil.

43

Soil as a Three-Phase Syster
Solid (particles)
Liquid (water)
Gas (air)

•*Porosity* has a direct influence on aeration, infiltration of water, and movement of water through the soil profile.

•Soil pores represent 50% of the volume, can be air filled (macro & micro pores) or water filled (micro pores). Saturated flow occurs through macropores, and unsaturated flow occurs through micropores.

AGRICULTURE LIFE SCIENCES

NC STATE UNIVERSITY DEPARTMENT of SOIL SCIENCE

Sand vs Clay

<u>Sand</u>

- Large pores
- Water moves fast
- Low surface area
- Less treatment capacity

<u>Clay</u>

- Small pores
- Water moves slow
- High surface area
- More treatment capacity

Onsite systems need to balance water movement with wastewater treatment

NC STATE UNIVERSITY DEPARTMENT of SOIL SCIENCE

ADHESION Forces of attraction between unlike molecules, e.g., water and solid.

Macro Pores Open "FILM" Flow

A MODEL FOR SOIL OXYGEN DELIVERY TO WASTEWATER **INFILTRATION SURFACES** J. Erickson, E. J. Tyler 9TH International Symposium on Individual and Small Community Sewage Systems. ASAE

COHESION Forces of attraction between like molecules, e.g., water and water.

WATER RETENTION A property of soil that results from the attraction of the soil matrix for water.

46

STATUS OF SOIL WATER vs. TEXTURE

content of water, on a mass or volume basis, remaining in a soil 2 or 3 days after having been wetted with water and after free drainage is negligible.

Field Capacity The

Gravitational Water

Water that moves into, through, or out of the soil under the influence of gravity.

SANDIER *drains* more water CLAYIER *holds* more water

<u>Available Water</u>

(capacity) The amount of water released between in situ field capacity and the permanent wilting point. It is not the portion of water that can be absorbed by plant roots, which is plant specific.

Narrow Borehole / Hydraulic Assessment

Published in Soil Science Society of North Carolina Proceedings, Vol. XLV (2002)

47

Advantages of Shallow Systems

□Most biologically active soil

More sorptive sites encountered

Better gas exchange (aeration)

□More permeable

A MODEL FOR SOIL OXYGEN DELIVERY TO WASTEWATER INFILTRATION SURFACES J. Erickson, E. J. Tyler 9 th International Symposium on Individual and Small Community Sewage Systems. ASAE

Drip Dispersal as a Nitrogen BMP

Reduce <u>all</u> Nitrogen Discharges 50% from <u>current practice</u>

FEBRUARY 2014

Recommendations of the On-Site Wastewater Treatment Systems Nitrogen Reduction Technology Expert Review Panel

FINAL REPORT

Submitted by:

Robert Adler, Eric Aschenbach, Jason Baumgartner, Jay Conta, Marcia Degen, Robert Goo, Joyce Hudson, Jeff Moeller, Dave Montali, Rich Piluk, Jay Prager

Submitted to:

Wastewater Treatment Workgroup Chesapeake Bay Partnership

Report version: February 2014 Report and Appendix G Approved by WQGIT: July 14, 2014 Prepared by:

Tetra Tech, Inc. 10306 Eaton Place, Suite 340 Fairfax, VA 22030-2201 3.9 SHALLOW-PLACED, PRESSURE-DOSED DISPERSAL

****** Twelve papers cited.

****** Seven Papers Specific to Drip Dispersal

** Two papers reflect "*controlled application"* at trench bottom loading rates. Instantaneous dose volume and frequency only achievable in field application with Drip Dispersal.

Anderson, Otis, Apfel

(six doses per day, .125 - .25 gallons per dose.)

Duncan, Reneau, Hagedorn (six doses a day,

.083 gallons per dose.)

BMPS address Domestic Waste < 1500 GPD

Drip Irrigation and Peat Treatment System On-site Wastewater Nutrient Removal BMP Expert Panel Report

APRIL 2018

April 2018

Conclusion

Drip irrigation should be recognized as a BMP achieving a net 50% TN reduction when either septic tank effluent or treated effluent is applied to a drip irrigation system designed under the following design criteria.

April 2018

Detailed Definition of Practice – Key Points

- Install in a natural surface horizon no deeper than 12 inches.
- No credit where TG 1 soils predominate within 12 inches below
- 18 inches unsaturated zone beneath

Either septic tank effluent or treated effluent

April 2018

Detailed Definition of Practice

- Filtration system on effluent
- Automatic flush cycle
- Equalize and time dosing over 24 hours
- Dose volume minimum 3.5 times drip network, 5X recommended

April 2018

National Onsite Wastewater Recycling Association

Figure 1: Drip Dispersal System Component Train

55

Detailed Definition of Practice

- A/V release valves at high points
- Max emitter spacing 2 ft : normal tube spacing 2 ft
- Minimum drip tube length = ½ dispersal area
- Maximum loading rates per Texture Group
 - TG II 0.27 gpd/sf
 - TG III 0.17 gpd/sf
 - TG IV 0.12 gpd/sf

Loading rate chart from proposed VDH BMP Policy.

April 2018

Chesapeake Bay Program

Science. Restoration. Partnership.

delivery .01 GPM, >60% water filled porosity

"Linear Load" provides relief along tubing when exceeding the instantaneous soil dose

The Soil "Bio-Reactor" Continuum

Nitrification / Denitrification in the same soil volume

Table 1. Percent Nitrogen Reductions for New Septic System Treatment BMPs

NEIEN BMP Name	Scenario Builder BMP Name	Percent Nitrogen Reduction
Septic Effluent with Shallow Pressure	Septic Effluent with Enhanced In Situ	38%
Septic Effluent with Elevated Mound	Septic Effluent with Enhanced In Situ	38%
Septic Effluent with Advanced Drip Dispersal	Septic Effluent with Advanced In Situ	<mark>50%</mark>
NSF 40	Secondary Treatment with Conventional In Situ	20%
NSF 40 with Shallow Pressure	Secondary Treatment with Enhanced In Situ	50%
NSF 40 with Elevated Mound	Secondary Treatment with Enhanced In Situ	50%
NSF 40 with Advanced Drip Dispersal	Secondary Treatment with Advanced In Situ	<mark>60%</mark>
IMF	Secondary Treatment with Conventional In Situ	20%
IMF with Shallow Pressure	Secondary Treatment with Enhanced In Situ	50%
IMF with Elevated Mound	Secondary Treatment with Enhanced In Situ	50%
IMF with Advanced Drip Dispersal	Secondary Treatment with Advanced In Situ	<mark>60%</mark>
RMF with Advanced Drip Dispersal	50% Denitrification Unit with Advanced In Situ	<mark>75%</mark>
IFAS	50% Denitrification Unit with conventional In Situ	50%
IFAS with Shallow Pressure	50% Denitrification Unit with Enhanced In Situ	69%
IFAS with Elevated Mound	50% Denitrification Unit with Enhanced In Situ	69%
IFAS with Advanced Drip Dispersal	50% Denitrification Unit with Advanced In Situ	<mark>75%</mark>
Proprietary Ex Situ	50% Denitrification Unit with Conventional In Situ	50%
Proprietary Ex Situ with Shallow Pressure	50% Denitrification Unit with Enhanced In Situ	69%
Proprietary Ex Situ with Elevated Mound	50% Denitrification Unit with Enhanced In Situ	69%
Proprietary Ex Situ with Advanced Drip Dispersal	50% Denitrification Unit with Advanced In Situ	<mark>75%</mark>

<u>Technical Requirements to Enter</u> <u>Advanced On-Site Wastewater Treatment</u> <u>Practices into Scenario</u> <u>Builder and the Phase 6 Watershed Model</u>

STE to Drip 50%

NSF 40 to Drip 60%

Intermit. Media to Drip 60% Recirc. Media to Drip 75%

Fixed Film Activated Sludge to Drip 75%

NSF 245 to Drip 75%

Chesapeake Assessment Scenario Tool CAST

< 1500 GPD

The Soil Treatment Unit (STU) "State of the Science" "Quantitative Tools"

MA

Quantitative Tools to Determine the Expected Performance of Wastewater Soil Treatment Units GUIDANCE MANUAL

Likely the most exhaustive characterization of the soil treatment unit (STU) to date 670 total pages. **2010**

"Tool Kit" HYDRUS

"..... Specific for this project, HYDRUS was modified to account for the effect of <u>water filled porosity</u>, carbon content, and temperature on treatment to improve its ability to simulate nitrogen transformation under a variety of OWTS loading conditions.....

"For <u>drip dispersal systems</u>, the HLR is a function of the frequency and duration of doses each day for a given length of dispersal tubing......"

From the FORWARD

"....although there are excellent texts on particular aspects of soil-based treatment systems, few texts address-and few practitioners understand - the full nature and complexity of soil-based wastewater treatment and dispersal systems.

Admitting this lack of understanding is the first step to making changes...."

Jose A. Amador

David L. Lindbo **Professor Emeritus, Soil Science, NCSU**

Former President Soil Science Society of America

George W. Loomis 2018

Director, Soil and Plant Science, Diversion USDA-Natural Resources Conservation Service

SUMMARY

Narrow Trench TUBING WidthShallow DepthIncrease soil contactGAS ExchangeEqual DistributionControlled ApplicationSHALLOW DISPERSALOxygen / CarbonBiofilms / Microsites

SIZE TIME DIVERSITY

RISK ASSESMENT

NOWRA

00

To strengthen and promote the decentralized wastewater industry.

Tashton@Americanonsite.com American Manufacturing Co., Inc.

For More Information

Tom Ashton R.E.H.S, L.P.S.S., M.A.O.S.E

NOWRA Contact Information:

Thomas W. Groves (Tom), Executive Director P.O. Box 982 Westford, MA 01886

> (phone) 978.496.1800 (fax) 703.997.5609 <u>www.nowra.org</u> executivedirector@nowra.org <u>info@nowra.org</u>