Automation in Onsite Systems: Progress, Future, and Classification System

Robert Bair, PhD

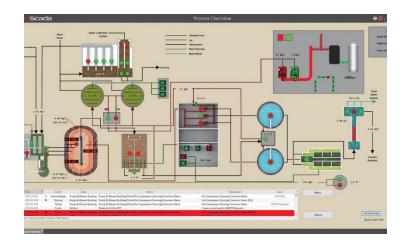
C. Castro, H.Y. Shyu, D.H. Yeh University of South Florida

Disclaimer:

The materials being presented represent the speaker's own opinions and do NOT reflect the opinions of NOWRA.

Definitions:

- Automation:
 - Use of technology to make process control decisions
 - Objective: reduction of human operation



- Failure detection & remote monitoring:
 - Identification of system malfunctions & process conditions
 - Objective: manual servicing

Automation in Wastewater Treatment

- 1970s discussing the prospect and promise of automating WWT
- Significant adoption since 2000s in centralized facilities
- Major advancements in processing power, WW specific sensors, improved control strategies

Benefits of Automation

- Benefits include:
 - Higher efficiency smaller footprints
 - Ability to meet treatment standards
 - More reliable water recycling
 - Better protection of human and environmental health

Automation in OWTS

- Major changes in OWTS in the same timeframe
 - Improved materials & new systems
 - Focus has been on improving design
 - Limited focus on automation

- OWTS systems could benefit from improved process control
 - Improved treatment performance
 - Smaller systems (smaller safety factors)
 - Application in "unsuitable" areas

Classification System

Class		Category Name	
" Y "	1	Manual operation	
	2	Passive systems	
	3	Open-loop control + hydraulic Inputs	
Ĩ	4	Water quality feedback + hydraulic inputs	

🖌 Class 1: Manually operated

- Design Philosophy:
 - Frequent maintenance
 - Logistics are critical

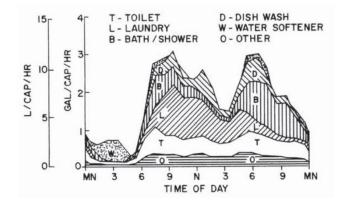
Examples: Vaults (Holding tanks) Cartage services

- Design Philosophy:
 - Completely passive design
 - System design is critical
 - Large safety factors
 - Poor system performance can go undetected for years

• Examples:

Septic tanks Gravity fed SWIS

Class 3: Open-loop + hydraulic inputs


- Design Philosophy:
 - Active control systems
 - Timers (open-loop)
 - Float switch hydraulic conditions

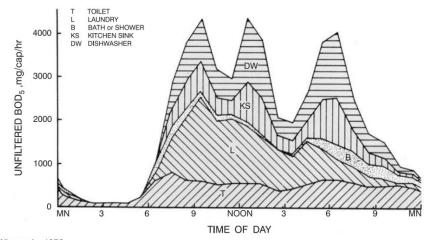
- Examples:
 - Timer based dosing to SWIS
 - Aeration to ATUs
 - Operation of SBR

Figure 3-3. Daily indoor water use pattern for single-family residence

Source: University of Wisconsin, 1978.

Class 4: Water quality + hydraulic inputs

• Design Philosophy:


Active control

Hydraulic Inputs

Water quality & environmental inputs

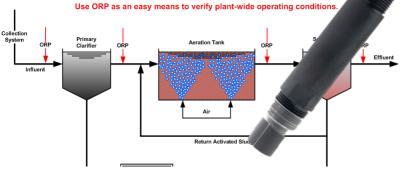
- Examples:
 - Centralized WWTPs

Figure 3-5. Average hourly distribution of total unfiltered BOD₅

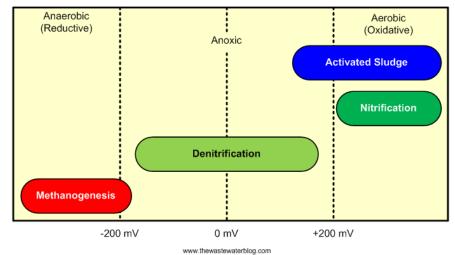
Source: University of Wisconsin, 1978.

Class 4 Systems: What are the limitations?

- Computing power?
 - Cheap, powerful, controllers
- Sensors!
 - Examples: Turbidity, DO, TSS, pH, ISP
 - Critical to OWTS
 - Initial costs
 - Replacement frequency
 - Maintenance frequency

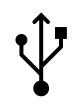

Direct Sensors

- **Direct Sensors** directly measure the parameter of interest
- Dissolved Oxygen
 - Used for **aeration** processes
 - \$500-3,000 per probe
 - Weekly- monthly recalibration & clear
- Ion Selective Electrodes
 - Ammonia, nitrate, & phosphate
 - Temperature & pressure



Indirect Sensors

- Indirect Sensors:
 - Do not directly measure the parameter of interest
 - Correlation with parameter of interest
 - Examples:
 - ORP for dissolved oxygen
 - pH for nitrogen removal



ORP Ranges (Broad) for Wastewater Processes

Machine Learning & Artificial Intelligence

- Develop complex predictive models
 - Use less obvious relationships between indirect sensors and control targets

Conclusions

- Onsite systems can benefit from higher levels of Automation
- Water quality sensors can make OWTS more adaptable to changes in influent conditions
- R&D needed for direct sensors
- Indirect sensors can be used
- Use of ML and AI can help create more adaptive control strategies

Questions:

Robert Bair, PhD

Senior Development Engineer Membrane Biotechnology Lab University of South Florida rbair@usf.edu

