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Septic system in Minnesota

 600,000→40 billion gallons/year

 25% →shoreland

 Non-point source to release nutrients and 
bacteria (MPCA, 2021)
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Septic System
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http://anytimesepticok.com/services/subsurface-systems/

BOD ≤ 300 mg/L

TSS ≤ 200 mg/L

BOD ≤ 170 mg/L

TSS ≤ 60 mg/L

?



Papers summary
sand filtration for septic tank effluent
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Sand Important properties Operating condition Wastewater
(mg/L)

Outcomes

Commercialized 
Sand 

Effective size
0.45 mm

Sand Depth
24 inches

Uniformity
3

Surface area
13.75 ft2

Intermittent
0.56-1.68 m/d

(Trial 1)
0.2 m/d
(Trial 2)

8-25 times/d (Trial 1)
4-13 times/d

(Trial 2)

Septic tank effluent
BOD: 120
COD: 289
TSS: 45
VSS: 33

NH4: 20.9
NOx: 0.3
PO4: 10.9

Fecal Coli.: 5.4 E+5 numbers/100 ml
Total Coli.: 2.0 E+6 numbers/100 ml

After sand filtration
BOD: 22-25
COD: 77-85
TSS: 13-22

VSS: 7-9
NH4: 13.6-16.0

NOx: 1.0-5.7
PO4: 5.9-8.2

Fecal Coli.: 2.7-9.8 E+3 numbers/100 ml
Total Coli.: 1.0-2.3 E+4 numbers/100 ml

Sand Effective size
0.44 mm

Sand Depth
12-24 inches
Uniformity

3.3
Surface area

2.58 ft2

Intermittent
0.236 m/d

(Trial 1)
0.255 m/d

(Trial 2)
3.7 L/min (Trial 1)
7.6 L/min (Trial 2)

Septic tank effluent
(with minor ammonia additive)

BOD: 115 (Trial 1)
BOD: 161 (Trial 2)
TSS: 56 (Trial 1)
TSS: 75 (Trial 2)
NH4: 25 (Trial 1)
NH4: 25 (Trial 2)

After sand filtration
BOD: 12-28 (Trial 1)
BOD: 20-40 (Trial 2)
TSS: 10-16 (Trial 1)
TSS: 16-28 (Trial 2)

NH4: 0.53-3.6 (Trial 1)
NH4: 0.39-3.0 (Trial 2)

Coarse sand
Fine sand
Glass sand

Effective size
0.52 mm (Coarse)

0.27 mm (Fine)
0.20 mm (Glass)

Sand Depth
10 inches (each)

Intermittent
1.5 gal/d/sq ft

Septic tank effluent
Enteroviruses

1.6 E+3 to 3.3 E+7
PFU/L

After sand filtration
Enteroviruses

0 to 6.2 E+3
PFU/L

River sand Size
0.80-1.18 mm (Sand 1)
0.40-0.80 mm (Sand 2)
1.18-4.75 mm (Coarse)
4.75-12.00 mm (Gravel)

Sand Depth
5cm 

(Gravel and Coarse)
40 cm

(Each sand)

Intermittent
20 L/day

Coagulated greywater
BOD: 39
COD: 80

Turbidity: 12 NTU
EC: 815 µS/cm

pH: 7.04
Fecal Coli.: 1.7 E+4 

MPN/100 ml
Total Coli.: 2.1 E+5 

MPN/100 ml

After filtration
BOD: 21-27
COD: 40-47

Turbidity: 4-5 NTU
EC: 898-883 µS/cm

pH: 7.51-7.62
Fecal Coli.: 2.0-3.7 E+2 

MPN/100 ml
Total Coli.: 5.3-9.1 E+3 

MPN/100 ml

Sand Sand Depth
15 cm 

Continuous
4 m/h

4 hours/cycle

Coagulated greywater
COD: 163
TSS: 37
pH: 4.85

After sand filtration
COD: 156
TSS: 22
pH: 5.91

Silica sand
Crushed lava rock

Size
0.5-2.56 mm (Crushed lava 

rock)
0.5-2.56 mm (Silica Sand)

Effective size

Constant
20 cm/d
40 cm/d

Settled greywater
pH: 7.2
DO: 2.2

BOD: 1125
COD: 2861

After filtration (removal efficiency)
Column 1

BOD: 61-67
COD: 70

TOC: 66.7-71

Sand filtration 
Good
Organic matter (~80%)
Turbidity

Bad 
Nutrients
Bacteria



Biochar and Iron materials
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 Biochar
-High surface area
-Homogeneous
-Grindability

 Iron materials
-High surface area
-High affinity to nutrients

https://www.connellygpm.com/zero-valent-iron
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Biochar application in wastewater
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Materials Pyrolysis 
condition 

Important 
properties

Wastewater
(mg/L)

Outcomes

Pine wood
1000 ℃
60 mins

BET: 
152.3 m2/g

Particle Size:
4.8-8 mm3

Brewery 
COD: 1243

PO4: 18
NH4: 24
TSS: 320

The higher removal rate is achieved by 
biochar instead of activated carbon. The 

biochar removal rate of pollutants is 94%, 
90%, 87%, and 82% for COD, PO4, NH4, and 

TSS, respectively. 

Commerciali
zed*2

Sand*3

900-1000 ℃
550 ℃

BET: 
537 m2/g
136 m2/g

Particle Size:
0.15-1 mm

CEC:
10.57 cmol/kg
13.63 cmol/kg

Carbon:
80.1 %
81.7 %

Synthetic stormwater*2
DOC: 0-15
NH4: 1-4
NO3: 1-6
DON: 1-2

E. coli: 0-107 CFU/100ml

After adding 30% (volumetric basis) of 
biochar, the TAN removal ratio is increased 
from 78.3% to >99%. The removal ratios of 

DON, TN, and DOC are also significantly 
enhanced by 5-18%. The result of E. coli 

doesn’t have significant change 
before/after biochar addition. However, 
the NOx (NO2 and NO3) will be increased 

after applying biochar due to more 
captured TAN and the following 

nitrification. 

eupatoriu
m 

adenophor
um

300-600 ℃

BET: 
11.4 m2/g

CEC:
19.5 cmol/kg

Carbon:
69-76%

Synthetic
NH4: 5-100
PO4: 5-100

The removal ratio of co-adsorption of 
ammonia and phosphate is significantly 

improved after pyrolysis. The low pyrolysis 
temperature shows better performance on 
the adsorption. The pseudo-second-order 
kinetics and Langmuir-Freundlich model 

fits the adsorption performance. Maximum 
uptake amount are 2.32 mg P/g and 1.909 

mg N/g)

Commerciali BET: 

Five percent of biochar (in weight basis) 
increases 3 order of magnitude E. coli 

removal ratio. The existing NOM would 



Papers summary
IES application in wastewater
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Iron type Mixing Percent 
(%) 

Important 
properties

Wastewater
(mg/L)

Outcomes

Fe (0)
0.3-5% (column)
7.2 and 10.7% 
(field)

Iron
87-93%
Carbon

2.85-3.23%
Particle size
<4.75 mm

Synthetic stormwater
0.233-0.531 mg PO4-P/L

Field study
0.027-0.14 mg PO4-P/L

In the synthetic stormwater experiment, 
it’s clear that 100% sand has no impact on 
the phosphate retain. On the contrary, 79% 
and 88% of removal efficiency is got from 
2% and 5% of iron filling, respectively. For 

the real field application, 85-90% of 
phosphate can be retained by the 7.2-

10.7% IES. 

Fe (0) 50%
Particle size

<0.43-0.60 mm
Doping 4 log CFU/mL

Into DI and pond water

The 50% IES presented high removal ratio 
on the E. coli in DI water. After 35 days, the 

removal ratio remains 95.58%. The 
removal ratio of 50% IES reduces sharply 

when using pond water. The removal 
efficiency reduces from 98.99% (Day 1) to 

43.93% (Day 35), revealing that the 
turbidity and conductivity would have 
some impacts on the E. coli removal. 

Fe (2+) 0-150 mg/L -

Synthetic wastewater
COD: 432-449
TN: 181-189

TP: 18-20

Greater than 85% COD removal efficiencies 
could be achieved by all the treatments 

and no significant difference before/after 
iron addition. The TN removal efficiency 

will be higher by 5-15% when doping high 
iron content (50 mg/L). While all the 

removal efficiency of NO3-N is over 90%, 
the NH4-N removal efficiency is around 

60% under high iron content for HRT>1d. 
The removal efficiency of 95% can be 

achieved with 15% IES addition for TP and 
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Biochar and Iron materials

Biochar

Iron materials
BOD/COD Turbidity NH4 NOx TP/PO4 Bacteria

C - C A A B

BOD/COD Turbidity NH4 NOx TP/PO4 Bacteria
A B A C B A

Sandy Soil

BOD/COD Turbidity NH4 NOx TP/PO4 Bacteria
B A B C C B

Evaluate under the same basis - uptake amount/adsorbent dosage



Purpose

 Soil-Biochar-IES mixture

 Real septic tank effluent

 Best material

 Applied dosage amount

 Big goal – local economy and well-being
12
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Real Septic tank effluent
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N=3 Mean

pH 7.27
EC 615.5
DO 1.1
TSS 57.5
TDS 485.5
TS 540.5
BOD 167.5
Total Nitrogen 75.1
Nitrate 3.44
Nitrite N.D.
TKN 71.2
Total Phosphorus 7.835
Phosphate 6.185
Fecal Coliform 98000



Batch test

 Sand - ASTM C33

Biochar & iron powder – Different material types

 Dosage amount – 0.5, 1, 2, 5, 10 g/50 ml wastewater

 Covered Flask = 50 ml wastewater + adsorbent

 Shaker for 24 hr

 Sample and analyze

16



Biochar & Iron materials

 Minnesota based – Black ash and Red pine

 Commercialized
– Biochar DG
– Biochar Pure
– Naked Char
– Terra Char – softwood Pine

– softwood Chunk
– hardwood powder

 Iron – IES, ZVI, and iron tailings
17



Contaminants - Analysis

 Solids

TSS

 Organic matters

BOD

 Nutrients

Nitrogen – Total Nitrogen (TKN+NOx)

Phosphorus – Total Phosphorus

 Bacteria

Fecal Coliform
18
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Batch tests

 C33 batch test – applied dosage

 Biochar – different materials

 Iron – different materials

 Biochar – applied dosage

 Iron – applied dosage
20
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BOD

C33 batch test

Removal efficiency ↑

Dosage ↑ until 5 g

10 gram→turbidity

T-test for dosage

p-value < 0.005 

5 gram!!
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Nutrients

Nitrogen

5 gram is still the best!

Phosphorus

Isn’t affected by C33 release

Removal efficiency ↑

Dosage ↑

0

10

20

30

40

50

60

70

0.5 g 1 g 2 g 5 g 10 g

TN

0

10

20

30

40

0.5 g 1 g 2 g 5 g 10 g

TP



Fecal Coliform

1-1.3 log reduction. 

No significant difference.
p-value > 0.005 

0.5 grams

If

Target contaminant→Fecal
0

0.5

1

1.5

0.5 g 1 g 2 g 5 g 10 g

Fecal Coliform - Log 
reduction



Batch tests

 C33 batch test – applied dosage (5 g)

 Biochar – different materials

 Iron – different materials

 Biochar – applied dosage

 Iron – applied dosage
24



Batch- Biochar screen test
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Most of the biochars

disintegrated……

high VM or too small size

Downstream = Black water



Batch- Biochar screen test
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TSS is a big problem.

Pine and Chunk. 

-12000

-10000

-8000

-6000

-4000

-2000

0

2000
TSS reduction



Batch- Biochar test

Biochar

Removal efficiency ↑

T-test – same dosage

p-value < 0.005 for Pine

Pine>Chunk

-Lower particle size

-Higher FC content

27
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Nutrients & FC

Biochar

Removal efficiency ↑

Different biochar

→ No influence 0
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Pine Chunk
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0

0.5

1

1.5

2

Pine Chunk

Fecal Coliform

0

20

40

60

80

Pine Chunk

TN



Batch tests

 C33 batch test – applied dosage (5g)

 Biochar – different materials (Pine biochar)

 Iron – different materials

 Biochar – applied dosage

 Iron – applied dosage
29



Batch- Iron screen test

30

ZVI…

Red = Ferrous dissolved

Iron oxide = sedimentation

IES →best reduction rate

Iron → good adsorbent 

but not too much

-20
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20

40

60

80

100

IES ZVI Iron
Tailings

TSS



Batch- Iron screen test

ANOVA – different iron

p-value > 0.005

Iron materials

Removal efficiency ↓

Not a perfect adsorbent 
for BOD.
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Nitrogen!!!

Overall removal efficiency is low.

Not a perfect adsorbent for 

nitrogen as well.

0
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10

15

20

IES ZVI Iron
Tailings

TN



Phosphorus

Perfect adsorbents for P.

Removal efficiency ↑

High selectivity

T-test – IES and ZVI

p-value > 0.005

0
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80

100

IES ZVI Iron
Tailings

TP
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𝑃𝑂4
3− + 𝐹𝑒3+ → 𝐹𝑒𝑃𝑂4

𝐹𝑒3+ + 3𝐻2𝑂 → 𝐹𝑒(𝑂𝐻)3+3𝐻
+

4𝐹𝑒3+ + 𝑃𝑂4
3− + 9𝐻2𝑂 → 𝐹𝑒4(𝑂𝐻)9𝑃𝑂4 ↓ +9𝐻

+

Mechanism → sedimentation



Fecal Coliform

Provide higher reduction rate
1-1.3 log reduction (C33). 

p-value < 0.005 

Different materials
p-value > 0.005 

0

0.5

1

1.5

2

2.5

IES ZVI Iron
Tailings

Fecal Coliform - Log reduction



Batch test

 C33 batch test – applied dosage (5g)

 Biochar – different materials (Pine biochar)

 Iron – different materials (IES)

 Biochar – applied dosage

 Iron – applied dosage
36
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Batch- Pine biochar test

TSS
Lower dosage is preferred.

BOD

Medium dosage is preferred.

Trade-off condition

Adsorption vs disintegrate
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Nutrients!!!

Nitrogen

1 g dosage

80% reduction rate 0
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TN
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TPPhosphorus

~80% reduction rate

(C33 <30%)

ANOVA 

No difference between

0.5, 1, 5 g



Fecal Coliform

Provide higher reduction rate
1, 2, and 10 grams are able to 

achieve 99% removal efficiency 

Different dosage
p-value > 0.005 

0
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0.5 g 1 g 2 g 5 g 10 g

Fecal Coliform - Log reduction



Batch tests

 C33 batch test – applied dosage (5g)

 Biochar – different materials (Pine biochar)

 Iron – different materials (IES)

 Biochar – applied dosage (1g)

 Iron – applied dosage
40
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TSS
Medium dosage 

No big difference

BOD

Didn’t vary much
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Nutrient!!!

High selectivity

Perfect adsorbents for P.

Removal efficiency of N is 

low.

TP

High dosage is preferred

2g, 5g, and 10g

p-value > 0.005 
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Fecal Coliform

No difference between C33 and IES

Different dosage
p-value > 0.005 

0

0.5

1

1.5

0.5 g 1 g 2 g 5 g 10 g

Fecal Coliform - Log reduction



Batch test

 C33 batch test – applied dosage (5g)

 Biochar – different materials (Pine biochar)

 Iron – different materials (IES)

 Biochar – applied dosage (1g)

 Iron – applied dosage (2g)
44
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Best materials comparison

Pine (removal efficiency, %)
BOD TSS TP TN Bacteria

86.36 75.55 80.15 80.94 99.30

C33 sand (removal efficiency, %)

BOD TSS TP TN Bacteria

83.64 66.67 21.33 57.44 90.85

IES (removal efficiency, %)

BOD TSS TP TN Bacteria

46.36 82.22 95.51 23.53 91.27

Best material with the best applied dosage



Future work - Column test

 Hydraulic Loading rate – 1.2 gallons/sq ft/day

 Intermittent operation  
- 3 to 7 L/min (0.8-1.85 gallons/min)
- 8 to 15 times/day
- Morning:30%, Noon:10%, and Night:60%

 Mixture configuration

 Durability – breakthrough and clog 46

Well-
mixed
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Thank you for your listening!
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Question?

 chen7953@umn.edu
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Price

 C33 concrete sand
 1 cubic yard – 16.82
 Less than a cent per pound

 ZVI
 $20 to $77 per pound depending on the quantity

 IES – 1-4 per pound

 Pine Biochar
 $58 per 23 pound
 2.5 per pound
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C33 vs Biochar

Pine (removal efficiency, %)

BOD TSS TKN TN TP/PO4 Bacteria
90.45 56.67 95.62 63.44 79.35/79.62 98.45

C33 sand (removal efficiency, %)

BOD TSS TKN TN TP/PO4 Bacteria
83.64 66.67 69.76 57.44 21.33/60.17 90.85

Evaluate under the same basis – 5 g/50 ml

Chuck (removal efficiency, %)

BOD TSS TKN TN TP/PO4 Bacteria
85 46.67 73.39 63.01 80.15/78.29 98.45
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Iron materials comparison

ZVI (removal efficiency, %)

BOD TSS TKN TN TP/PO4 Bacteria
56.36 -5.00 15.28 15.85 98.66/99.58 98.17

IES (removal efficiency, %)

BOD TSS TKN TN TP/PO4 Bacteria
53.64 86.67 20.85 17.39 96.76/98.78 96.34

Evaluate under the same basis – 5 g/50 ml

Iron tailings (removal efficiency, %)

BOD TSS TKN TN TP/PO4 Bacteria
53.64 46.67 20.65 3.43 35.20/67.35 98.87


