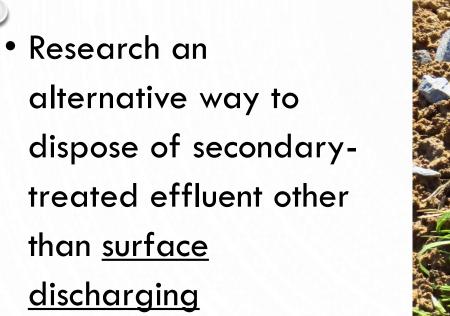


REDUCED ABSORPTION AREA PERFORMANCE UTILIZING SECONDARY-TREATED EFFLUENT IN PROFILE-LIMITING SOILS

David Meints, M.S.

- Introduction
- Justification
- Objective / Hypothesis
- Materials and Methods
- Results
- Conclusions

PRESENTATION OUTLINE


Site F - 3/2/2018

- Background
 Education
 - Work
- History 500,000
- Onsite
 Wastewater in
 Arkansas
 1913 Present

JUSTIFICATION

- Reduce regulatory burden
- Environmentally responsible

Surface Discharge – Round Mountain, Conway, Arkansas

 The objective of the study was to determine the feasibility of hydraulically loading limiting soils with secondary-treated effluent in a reduced absorption area.

• Soils hydraulically loaded at two times the loading rate for secondarytreated effluent will not exceed a ponding depth of 27 cm for a consecutive period greater than 14 days.

• Performance of hydraulically loading limiting soils with secondary-treated effluent in a reduced absorption area would differ over time between wet and dry seasons.

- Site selection
- Design criteria
- Construction
- Data collection

Site A - 3/2/2018

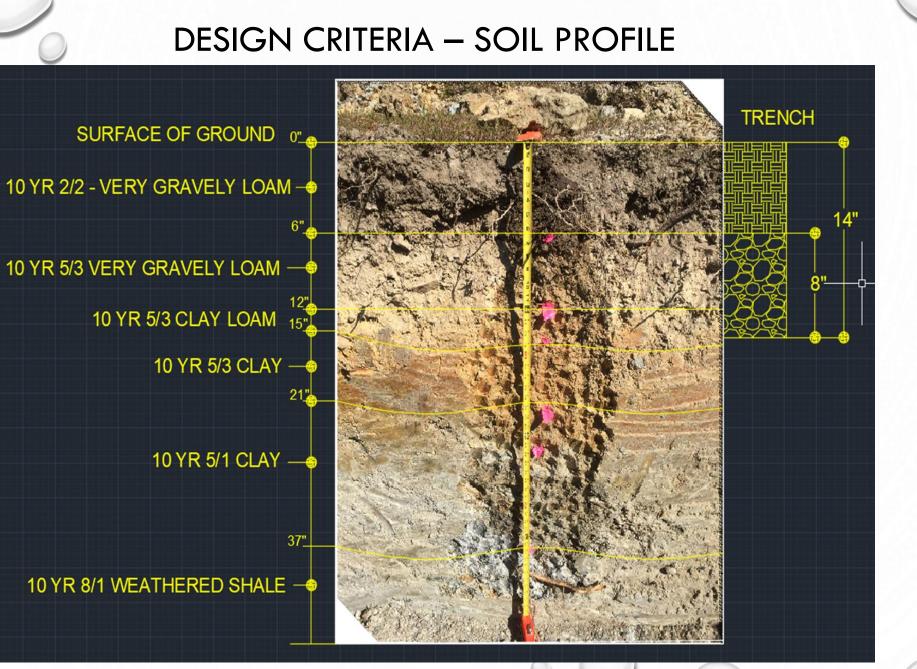
SITE SELECTION - PARTICIPATION

Research Sites A-F D A 500 Rushing Rd Legend 9 500 Rushing Rd Feature 1 1000 ft Google Earth

Aerial image of research Sites A through F in Saline County, Arkansas. Google Earth image created on 2/26/2019 (Google Earth, 2018).

ORENCO SYSTEMS, INC. 800-348-9843	Advantex AX-20 & AX-20RT Synthetic media filter treats effluent from septic tank with effluent filter - Rated for 500 gpd
ACQUIRED WASTEWATER TECHNOLOGIES 318-746-5122	Alliance - Rated at 500, 600, 750, 1000 gpd Cajun Aire - Rated at 500, 750, 1000 gpd Mighty Mac - Rated at 500 gpd
AERO-TECH 574-935-0908 AQUAKLEAR	AT Models - Rated at 500, 600, 750, 1000, 1500 gpd Models - Rated at 500, 600, 750,
877-936-7711	1000, 1500 gpd (concrete, fiberglass, polyethylene tanks)
BIO-MICROBICS 800-753-3278	Micro FAST 0.5, 0.625, 0.75, 0.9, 1.0, 1.5 - Rated at 500, 625, 750, 900, 1000, 1500 gpd

https://www.healthy.arkansas.gov/images/uploads/pdf/product_list_20180215.pdf


60

DESIGN CRITERIA – SOIL DESCRIPTION

Ap – 0 to 15 cm; very dark brown (10YR 2/2) very gravelly loam; weak fine granular and subangular blocky structure; very friable; many very fine and medium roots; 50% 2-10 mm sandstone fragments; clear smooth boundary.

E - 15 to 30 cm; brown (10YR 5/3) very gravelly loam; weak fine subangular blocky structure; friable; many very fine and medium roots; 60% 2-30 mm sandstone fragments; clear smooth boundary.

Bt1 – 30 to 38 cm; brown (10YR 5/3) silty clay loam; common fine yellowish red (5YR 4/6) redox concentrations; moderate medium subangular blocky structure; friable; few thin clay films; common fine roots; 8% 2-10 mm sandstone fragments; abrupt smooth boundary.

DESIGN CRITERIA – EFFLUENT QUALITY

Effluent Characteristics	Discharge Limitations Concentration (mg/l, else specified)		Monitoring Requirements	
			Frequency	Sample Type
	Monthly Avg.	Daily Max.		
Flow (GPD) ¹	report	report	once/six months	estimate ²
Biochemical Oxygen Demand (BOD5)	10.0	15.0	once/six months	grab
Total Suspended Solids (TSS)	15.0	22.5	once/six months	grab
Dissolved Oxygen (DO)	6.0 (Inst. Min.)		once/six months	grab
Fecal Coliform Bacteria (FCB)	(colonies/100 ml)			
	200	400	once/six months	grab
pH ³	Minimum 6.0 s.u.	Maximum 9.0 s.u.	once/six months	grab
If applicable:4				
Total Phosphorus (TP)	Report	Report	once/six months	grab
Total Nitrogen (TN)5	Report	Report	once/six months	grab

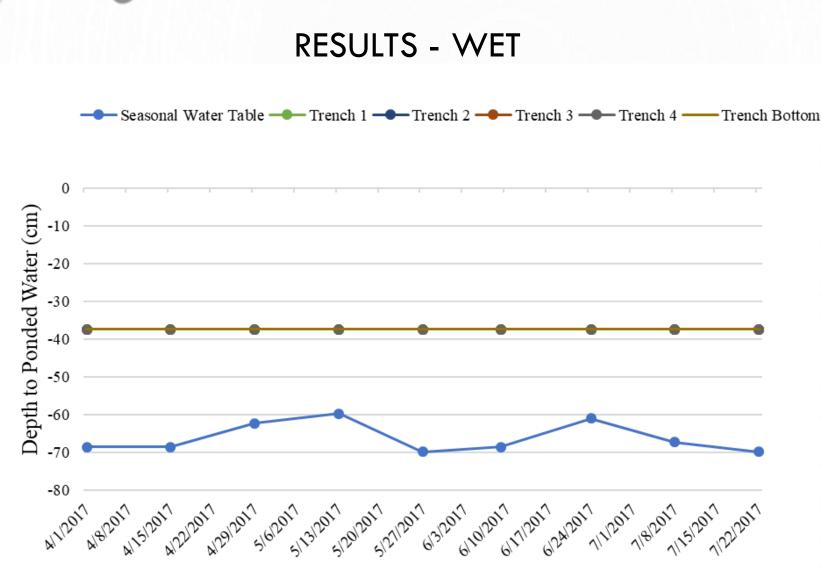
https://www.adeq.state.ar.us/water/permits/npdes/nonstormwater/pdfs/arg550000/2014_final_pe rmit.pdf

Table 4.2 Soil Loading Rates for Infiltrative Surfaces

SOIL TEXTURE	SOIL STRUCTURE		HYDRAULIC LOADING RATE (gpd/ft2)		LINEAR LOADING
	SHAPE	GRADE	BOD>30 mg/L and < 140 mg/l*	BOD<30 mg/L	(gpd/ft)
Coarse sand, Sand, Loamy coarse sand, Loamy sand	Single grain	Structureless	0.8	1.6	6
Fine sand, Very fine sand, Loamy fine sand, Loamy very fine sand	Single grain	Structureless	0.4	1.0	5
	Massive	Structureless	0.2	0.6	
1		Weak	0.2	0.5	
Coarse sandy loam, Sandy	Platy	Moderate, Strong			4
loam	Prismatic,	Weak	0.4	0.7	-
	Blocky, Granular	Moderate, Strong	06	1.0	
	Massive	Structureless	02	0.5	
Fine sandy loam, Very fine	Platy	Weak, Moderate, Strong			3
sandy loam	Prismatic .	Weak	0.2	0.6	
Sundy Iouni	Blocky, Granular	Moderate, Strong	0.4	0.8	
	Massive	Structureless	0.2	0.5	3
Loam	Platy	Weak, Moderate, Strong			
Louin	Prismatic,	Weak	0.4	0.6	
	Blocky, Granular	Moderate, Strong	0.6	0.8	
	Massive	Structureless		0.2	
Silt Loam	Platy	Weak, Moderate, Strong			3
She Louin	Prismatic,	Weak	0.4	0.6	ĭ
	Blocky, Granular	Moderate, Strong	0.6	0.8	
Sandy clay Ioam, Clay Ioam, Silty clay Ioam	Massive	Structureless			
	Platy	Weak, Moderate, Strong			2.5
	Prismatic,	Weak	0.2	0.3	2.5
	Blocky, Granular	Moderate, Strong	0.4	0.6	
Sandy clay, Clay, Silty clay	Massive	Structureless			
	Platy	Weak, Moderate, Strong			2.5
	Prismatic,	Weak			2.5
	Blocky, Granular	Moderate, Strong	0.2	0.3	

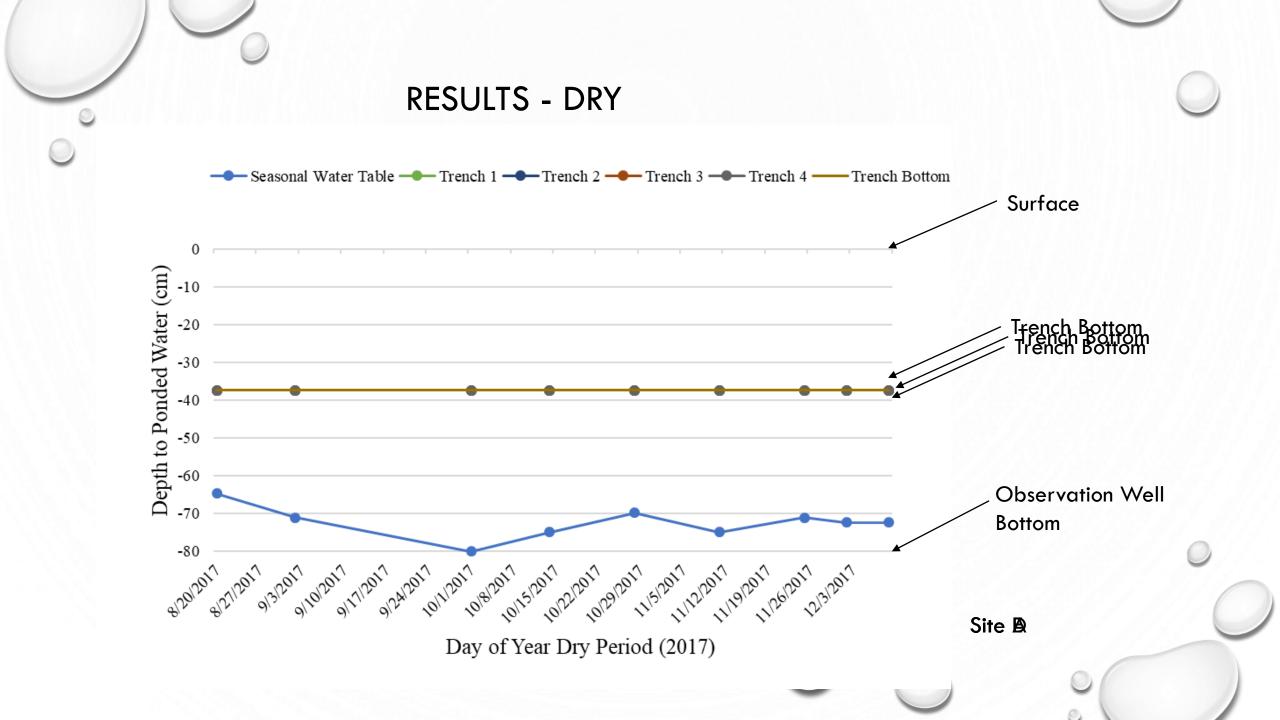
Source: Adapted from Tyler, 2000 – USEPA Onsite Wastewater Treatment Oystems Manual * For BODs>140 mg/l, see Chapter 5

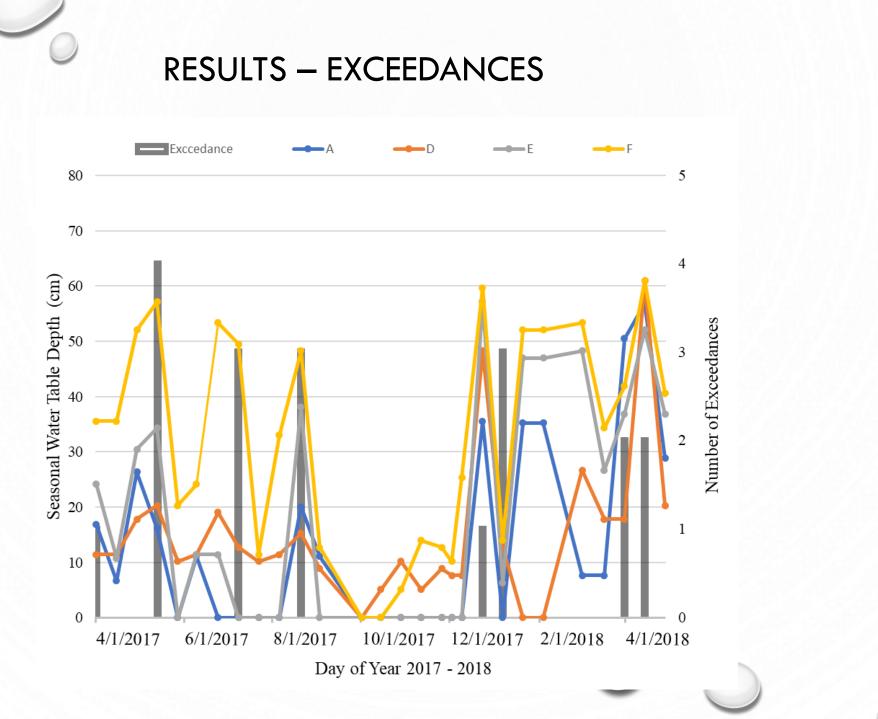
- Flow meters
- Gate valves
- Trenches
- Inspection
 ports



DATA COLLECTION

- Interval
- Trench ponding
- Seasonal water table
- Flow
- Rainfall
- Observations


	Flow	Disposal area	Design	Actual	
Site	(L d ⁻¹)	(m²)	(L m² d ⁻¹)	(L m² d ⁻¹)	Multiplier
Α	1749	37.6	12.2	46.5	3.8
В	863	7.0	32.5	123.3	3.8
с	458	5.6	32.5	81.5	2.5
D	488	9.8	12.2	49.7	2.0
E	697	29.3	12.2	23.8	2.0
F	772	29.3	12.2	26.3	2.2


Se Manthly, rainfall data, both actual and 30 yers (1981-2010) average another how were recorded of the flow mores antenna the ship suffrage is the 4-anyline on how were recorded of the flow mores antenna the ship suffrage is the 4-anyline on how were recorded of the average method well is flow of the ship suffrage is the 4-anyline on how were recorded of the average of the average of the ship suffrage is the 4-anyline of the ship suffrage of the average of the average of the ship suffrage is the 4-anyline of the ship suffrage of the average of the average of the ship suffrage of the ship suffrage of the ship suffrage compared to home water one of reading to verify accuracy.

Day of Year Wet Period (2017)

Depth to ponded secondary-treated effluent during the wet prettipoetricoombranding under July 20117/2001/2001/2001p7-slope friese phatique plopteand the boose disprison a broten ches at censel threh foune D. The soil stisforselistencoesnatmark ceseter ch Sitis. Etherherench wittsunfacetishte30-cm chepthankcork.theo yoonding encis.mTheastneendthduring the bottom is inthe dever, the depth matankater table was present throughout this period.

DISCUSSION

- Seasonal water table
- Textural change
- Equalization
- Lateral movement

Site **A**-4/28/2018

CONCLUSIONS

• Based on the absence of appreciable secondary-treated effluent ponding at sites B, C, and D during the study and the minimal exceedances in site A, E, and F, which was linked directly to fluctuating seasonal water tables, it is reasonable to consider hydraulically loading secondary-treated effluent at a rate Tyler (2001) established based on soil textures and structure. Consideration must be given to hydraulically loading secondary-treated effluent in unsuitable soils or suitable soils with a reduced disposal area.

