DESIGN ASPECTS OF TIME DOSING AND FLOW EQUALIZATION

Kevin Sherman, PE, PhD, D,WRE SeptiTech, Inc. Lewiston, ME

Disclaimer

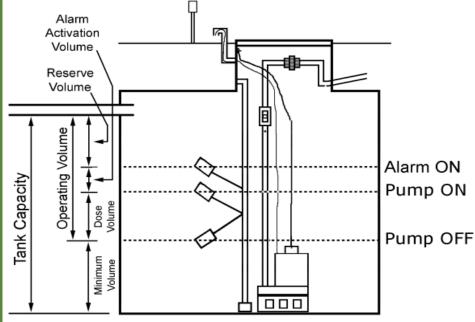
The materials presented here should not be construed as the opinions of the

> National Onsite Wastewater Recycling Association

Types of Pump Dosing

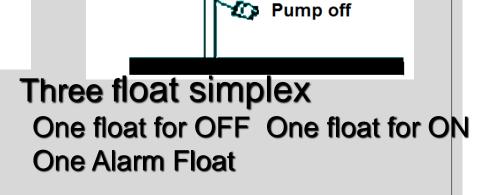
Demand dose

Dose delivered based on effluent level in pump tank
 Operates in response to wastewater generation
 Controls consist of liquid level sensors set to dose predetermined effluent elevations

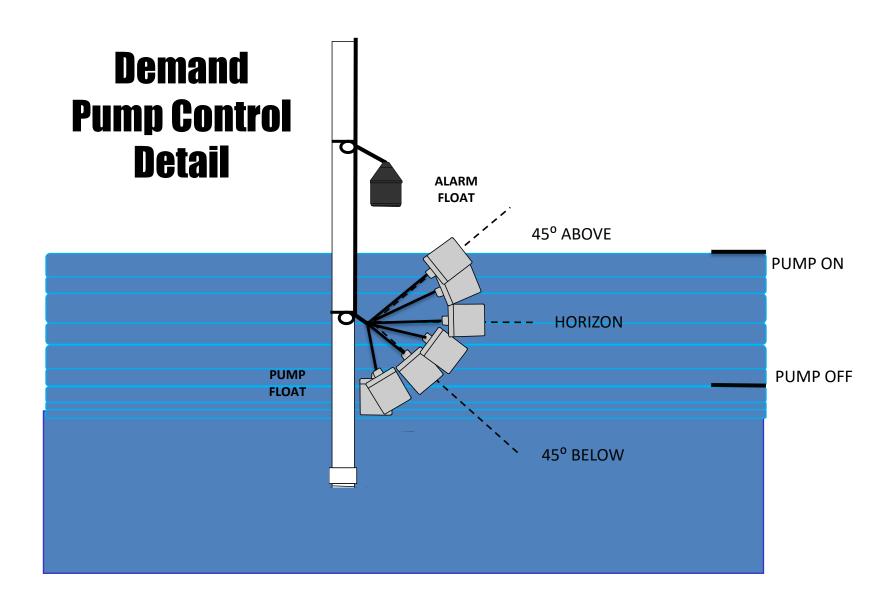

• Time dose

Timer provides set dose volume multiple times/day
 Controls consist of liquid level sensors and timer
 Requires surge capacity pump tank

 -- does not directly respond to demand

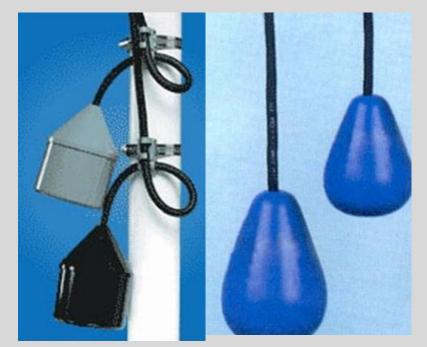

Demand Dose float configuration

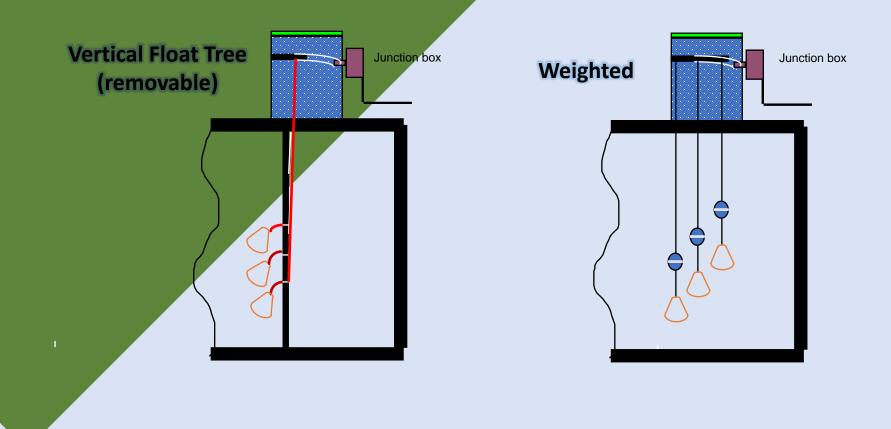
1 St. 11


Dosing Tank with Demand Controls

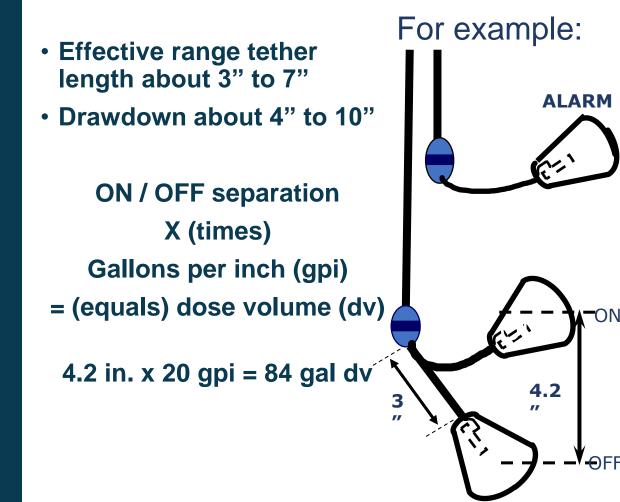
Two float simplex One wide-angle differential float One Alarm float

🕗 Alarm

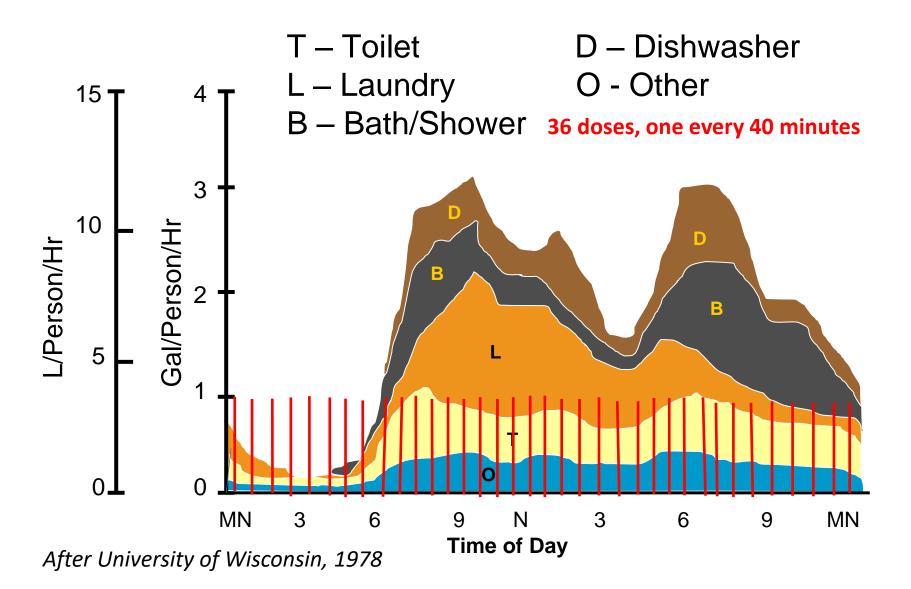

Pump on


Float Types

Mechanical or Mercury

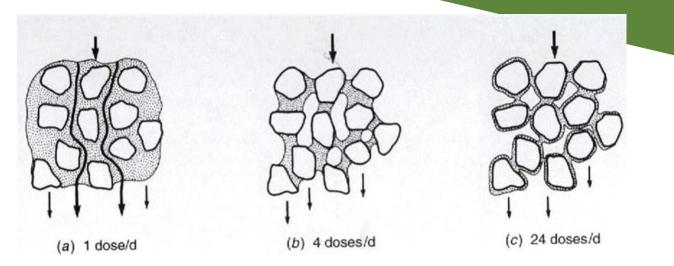

- Used to detect liquid levels in pump tank and turn pump on and off
- Attached to a separate float tree (left) or on weighted hanger (right)

Connecting float options

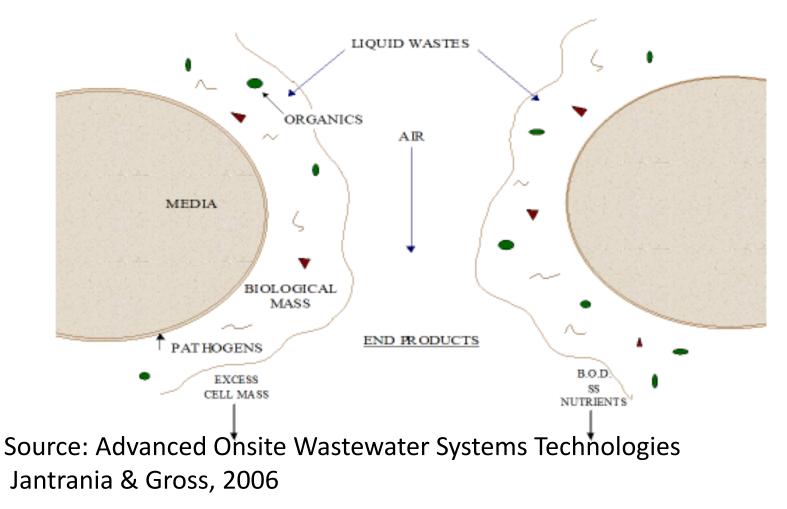

Demand dosed settings: Single wide angle

Advantages / Limitations of Demand Dosing

- A: Simple and less expensive
- L: Provides no control on total amount or when effluent is dosed to soil treatment area
- L: Provides limited information on usage
- L: Delivers variable effluent volumes depending on unrecognized events
- L: Difficult to deliver very small (10's of gallons) or very large (200+ gallons) doses
- O: Some call this delivery method 'social dosing'


Time dosing over 24 hours

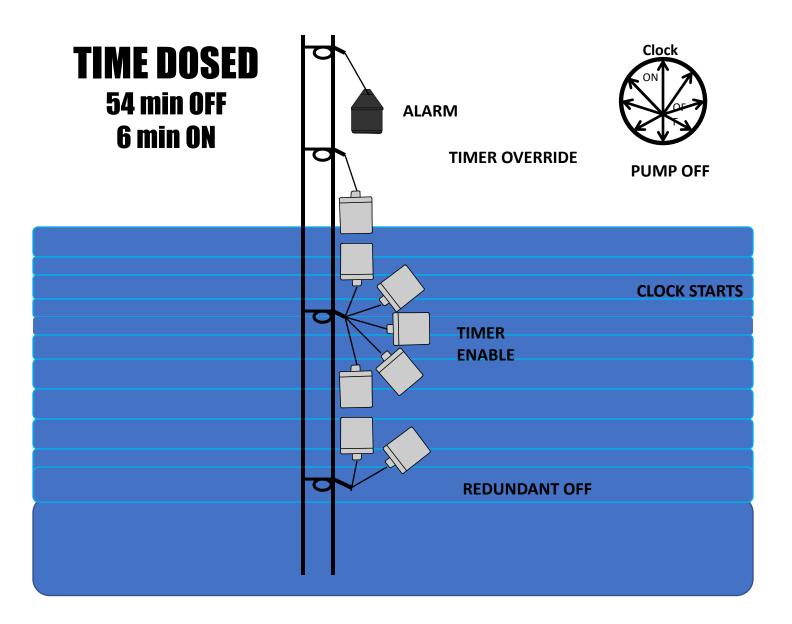
Time dosing addresses the limitations of demand dosing

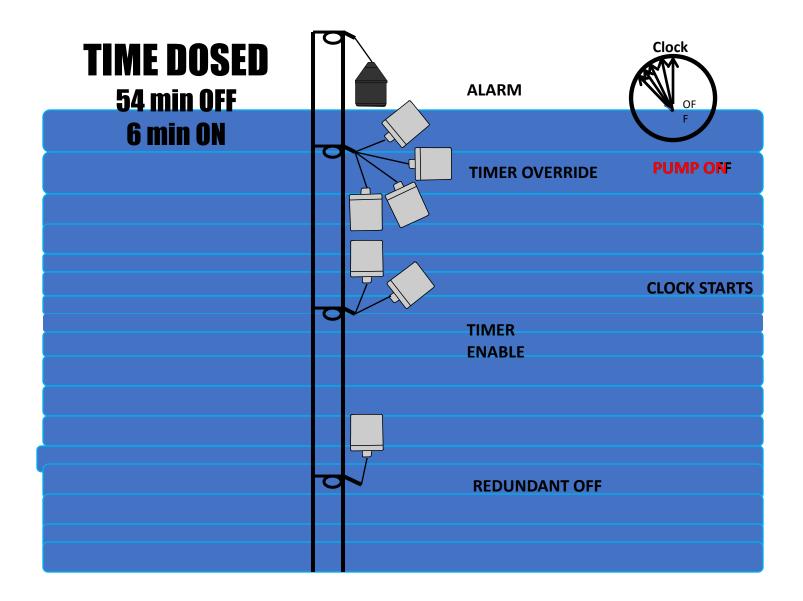

- Allows pre-determined volume to be delivered over discrete time periods
- Pump operates for a pre-programmed length of time and rests for a pre-programmed length of time, typically over 24 hours
- Protects downstream components from overloads
- Uses a control panel with adjustable on-off timer
- Control panel should also include an event counter and elapsed time meter to aid in O&M activities. Read and record data every service visit and compare to previous readings

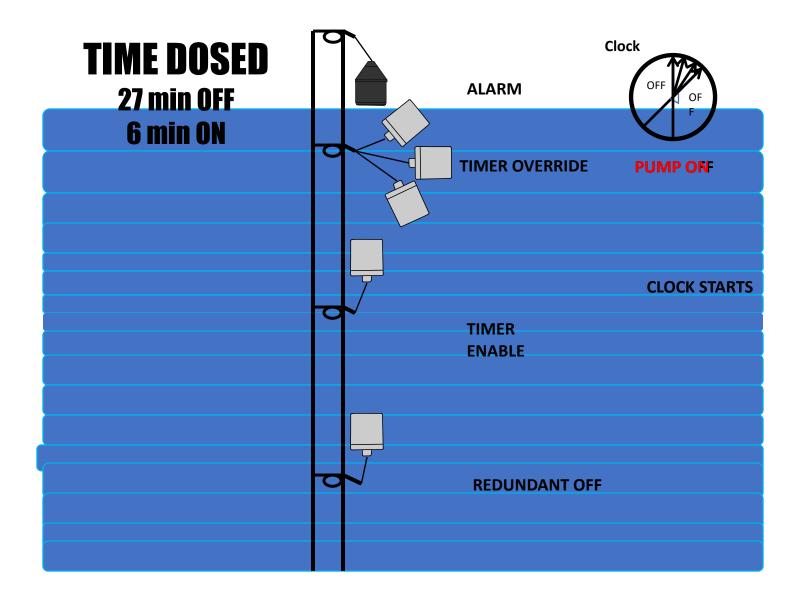
Benefits of Micro-dosing film flow = better treatment

Source: Small and Decentralized Wastewater Management Systems, Crites & Tchobanoglous, 1998

PROCESSES AT WORK

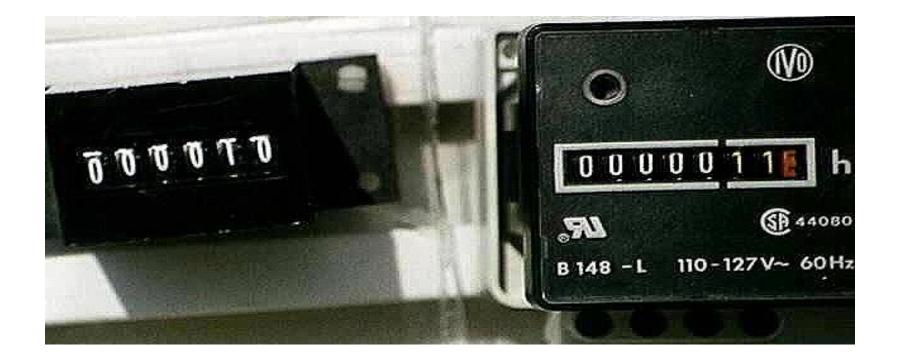



Time Dosing as a management tool


- Set timer to limit flow rate to design flow to STA
- Alarm will warn of excess flow (i.e. overuse, stuck toilet valve, leaking tank riser, etc.)
- Prompts action before allowing damage to soil treatment area

Location, name, purpose of Floats (from bottom up)

- Redundant off –Closest to Tank Bottom
 - stops the pump from running the tank dry
 - keeps pump submerged
 - should be combined with a low-water alarm
- Timer enable just above Redundant off
 - start / stop the timer
 - assure minimum dose volume exists above Redundant off
- Timer override— Between Timer enable and Alarm
 when activated, halves selected "off-time" to catch pump up
- Alarm—Top float (can also be at or below Timer override)
 - warn of malfunction or excessive water use


How low should the lowest float be?

- Pump intake should be installed a few inches (~4") above bottom to avoid sucking in collected solids in tank
- Liquid surrounding pump cools it
- By placing 100% of the pump casing under liquid 100% of the time, you will double the effective pump life – Chuck Schwabe – Liberty Pumps
- After servicing the pump tank return water to at least the top of the pump casing - why?

Important aspects of control panels

- H(and), O(ff), A(uto) switch must be in A(uto) when leave site
- Gas tight seals in conduit pipe to control panel and in tank (belt and suspenders)
- Use multi-meter to check amp draw and voltage looking for changes over time
- Reading elapsed time meter, event counter (#alarms, electrical failures, timer overrides)

Cycle Counter and Elapsed Time Meter

	Date	Cycle Counter	Elapsed Time
Observation 1	2/20/2021	8,788	14,409 minutes
Observation 2	7/1/2021	9,428	15,710 minutes
Difference	138 days	640 doses	1,301 minutes

Example #1 using data from control panel

- If pump delivers 30 gpm, total flow estimated at 30 g/min × 1,301 min = 39,030 gal
- Average number of doses per day = 640 doses / 138 days = 4.6 doses per day
- Average gallons used per day = 39,030 gal / 138 days = 283 gallons per day

In-field pump delivery rate measurement

- Over time pump's efficiency may decrease
- Pipe network may build up internal coatings
- Designer set pump gpm may no longer be accurate
- Must check/confirm discharge rate in field
 - At system start-up to confirm timer settings are correct
 - Periodically, to re-confirm, adjust settings as needed

How To Measure Pump Delivery Rate

1. Measure & record effluent level before 137°

2. Run pump for 3 to 5 min.

Example #2

Information as in previous slide
Additional information – Run time 4.5 minutes
Tank is rootongular 6' long 5' wide

• Tank is rectangular 6' long 5' wide

What is pump delivery rate?

Solution: Example #2

- Volume of water pumped
 5' × 6' × 0.58' (drawdown) = 17.5 ft³
- 17.5 ft³ × 7.48 gal / ft³ = 130.9 gallons
- 130.9 gallons / 4.5 minutes = 29.1 gpm

Time dosing advanced pretreatment systems

Example #3: Recirculating Media Filter

- Q=1200 gpd.
- Recirc Ratio = 3:1
- Dose Filter 48 times/day: 1200x4 = 4800/48 = 100 g/dose
- Based on 25 gpm: Set timer at 4-min on; 26-min off

Example #4 - Incorporating time dosing in drip dispersal

- Q=360 GPD (3-bedroom)
- Drip Field pump-rate: 3 gpm
- "Normal" Flow settings to deliver 60%
 = 0.6 x 360 = 216 gallons/day
- for 12 doses/day: 216/12 =18 gals/dose
- "On-time"=18/3 =6m; "Offtime"=114m
- (1440 minutes/day/12 = 120 m/cycle)
- "Override" Settings: "Off-Time" = 66m
- [1440/(66+6) = 20 doses x 18 = 360 gals]

Recording information gathered during a service visit

- Forms ensure you are looking at parts of the system in a logical sequence – not jumping around
- Forms ensure you write the information down
- Ask you to rate components as acceptable (operable) or unacceptable (substandard or damaged)
- May need to repair, maintain, upgrade, or investigate further

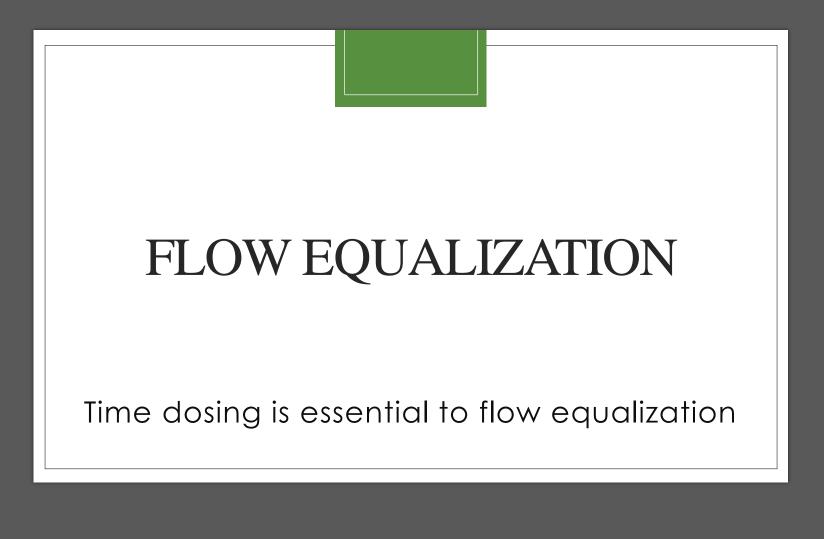
Form 6-3 Operational Checklist: Pump: time-dosed system (PTD)

Ser	vice provided (n: Date:	Time:	Reference #:	·	
Ser	vice provided l	y: Company:				
Dat	e of last servic	:		By: 🗆 You	□ Other:	
		tion:				
						NOTES
1.	Controls		Timer m	anufacturer:		1 11
	a. Is en	closure watertight.		Yes	<u>No</u>	1. 🗆 Acceptable
	b. Alar	n test switch worki	ng properly.	Yes	No	□ Unacceptable
	c. At ti	ne of inspection, tin	ner was set at:	"On" Mode	setting	
				"Off" Mode	setting	
	d. At ti	ne of inspection, co	ontrol switch (HAN	ND-OFF-AUTO) was	set at:	
				"Hand/Manua		
				"Off	,	
				"Auto"		
	e. If tin	er was changed fro	m above, new sett	ing is: "On" Mod	le setting	
"Off" Mode setting						
f. Electrical meter readings:						
		Reading (this)	Reading (last)	Difference	N.A.	
i)	ETM			min		
ii)	Cycles/events			Events (NC)		
Calculate cycles/day: [NC] / [Days] = [CPD]						
	g. Tele	netry operational.		N.AYes_		
	2			Туре:		

2.	Pump			1			2. 🗆 Accept	
	a. P	ump operating properly.			Yes	_No	□ Unacce	ptable
	b. T	ype of pump:	🗆 N	Aulti-stage	🗆 Sin	gle-stage		
	c. A	mps measured:		-		amps	5	
	d. V	oltage measured:				volts		
	e. P	ump turns on/turns off.			Yes	_No	3. 🗆 Accept	
3.	Water leve	el sensors					□ Unacce	ptable
	a. T	ype of water level sensor:	□ Floats	Pressure	transduc	ers		
			Ultrasonic	□ Other:				
	b. P	ump sensors functioning p			Yes	<u>No</u>		
	c. A	larm sensor operating aud	lible and visible al	larms.	Yes	<u>No</u>		
4.	Sensor sett	tings:						
	Sensor	Function	Operational		Set At:		Secured	
	Number*	¢		Inches**	:	Datum		
	1		YesNo				YesNo	
	2		YesNo				YesNo	
	3		YesNo				YesNo	_
	4		YesNo				YesNo	
	5		YesNo				YesNo	
	*(Designate starting from bottom of tank)					_		
	** Measur	ements are taken from a f	fixed point (''Datu	m") near the	e surface o	or bottom of j	float tree in	
	<u>inches)</u>							
5.		very rate (PDR) (measure						
		ump Off			_=	in		
		PI: (From For	m 6.1 - Item 3 e)					
	c. V	erified pump run time:				min		
	(In x		GPI) ÷	Pump ru	n time (min)	=(GP1	(Iv

6. Dose volume (DV) (from timer setting)

a. Pump delivery rate: ______ GPM (from Item 5)
b. Verified pump run time: ______ min
______ GPM x _____ min/cycle = _____ (DV[Gal/ cycle])


7. Total gallons (from elapsed time meter)

a. [_____ (PTR) - ____ (LTR)] x ____ (GPM) = _____ Total Gal
OR Total gallons (from event/cycle counter)
[_____ (PCR) - ____ (LCR)] x ____ (DV) = _____ Total Gal

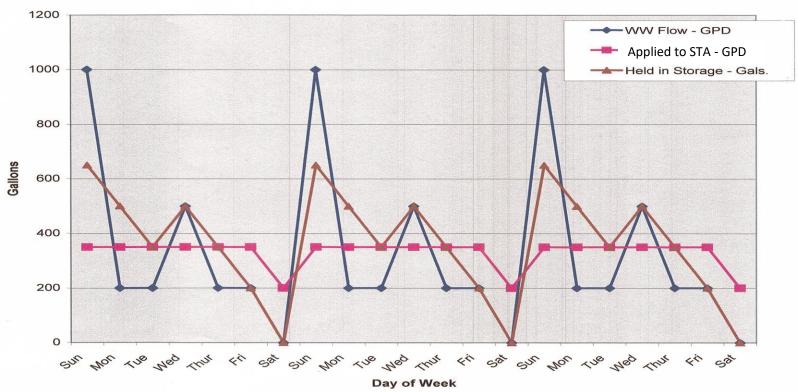
8. Gallons per day (GPD)

_____ Total gal ÷ _____ No of days = _____ Gal./Day (GPD)

CPD: cycles per day DV: dose volume ETM: elapsed time meter GPD: gallons per day GPI: gallons per inch GPM: gallons per minute HAND-OFF-AUTO: Hand-Off-Auto Switch LCR: last cycle reading LTR: last time reading PCR: present cycle reading PDR: pump delivery rate PTR: present time reading Source: Residential Onsite Wastewater Treatment Systems: An Operation and Maintenance Service Provider Program CIDWT, 2008

Flow Equalization

Flow Equalization Systems utilize Time Dosing to distribute wastewater to an advanced pretreatment system (over 24 hours) or effluent to a soil treatment area uniformly over an extended time period (more than 24 hours)


- Used as means for reducing soil treatment area for select facilities
- Facilities must have daily use pattern well established, and not subject to change.
- Equalized Flow Time period typically multiple days (≤ one week)

Objectives of Flow Equalization tank(s)

- Provide a controlled flow rate to downstream operations and processes
- Use equalization tank to:
 -dampen variation in flow rate
 -reduce required size of downstream
- components
 - -e.g., allow treatment and/or dispersal to be designed on average flows, not peak (up to 50% cost savings)

Which facilities can benefit from flow equalization?

- Commercial facilities with substantial daily flow variations
- Facilities with days where flow is very low and very high
- Facilities that use advanced treatment
- Examples: Schools, offices (5 days of flow per week)
- Houses of worship (1-3 days of flow per week)
- Festivals, Flea Markets (2-3 days of flow per week)
- Banquet / rental halls (occasional use)
- Stadiums, Arenas, performance centers (occasional use)

FLOW MASS BALANCE EXAMPLE - CHURCH

Calculating the storage needed

Example #3: 200 Seat Church

Flow Mass Balance							
Day	WW Flow – GPD	Applied to STA – GPD	Held In Storage – Gals.				
Sun	1000	350	650				
Mon	200	350	500				
Tue	200	350	350				
Wed	500	350	500				
Thur	200	350	350				
Fri	200	350	200				
Sat	0	200	0				
	Average: 329 GPD						

Sizing parts of the system

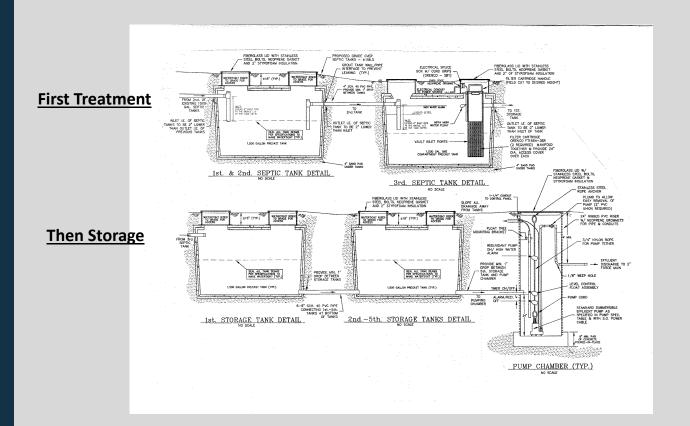
- Size components upstream of flow equalization on estimated peak flows
- Size components downstream of flow equalization tanks are sized on average flow
- In example #4, we can size the soil treatment area on 350 gpd average flow

Design considerations for flow equalization tank(s)

- One large tank or multiple tanks with hydraulic connection at and below tank liquid level (watertight connections)
- Blended wastewater released to next step in treatment
- Time dosing of stored contents is essential
- Pump "on-time" based on measured drawdown
- Buoyancy counter-measures are also essential
- In addition to Equalization Volume also provide Emergency Storage Capacity volume

Example #4

- 200 seat church with daily flows as shown on previous slides
- If a single flow equalization tank is desired what is an acceptable tank volume?


Choosing an adequate tank volume

- Want to capture/contain peak flow every time
- Include safety factor (e.g., 25%) to capture any exceptional flow
- Review data collection
- Choose an average flow that fits existing data
- Run a spreadsheet simulation of tank volumes over time
- Iterative process

Pump (Equalization) Tank Volume

CONTROL PANEL		EXAMPLE:	
		200-Seat Church	
		Peak Daily Flow: 1000 GPD	
		Equalized Daily Flow: 350 GPD	
	3/16" VENT	Septic Tank Volume: (Based on Peak Daily: e.g., 1	800 gallons
emergency storage volume		Pump (Equalization) Tank Volume:	
		TIMER OVERRIDE (assume Tank 5-ft x 10-ft = 31 gallons/inch)	
	$\mathbb{N} = \mathbb{N} $		3 gallons
equalization volume		Dose Volume (twice/day): (350 x .5) = 17	'5 gallons
		Equalization Volume (650 x 1.25) = 81	3 gallons
×		DOSE ENABLE Emergency Storage Volume (1/2 Peak) = 50	0 gallons
dose volume		Total 220	1 gallons
pump submergence	PUMP		
	4" BLOCK		

Multi-Tank storage option for flow equalization tanks

QUESTIONS?

Kevin Sherman's email, ksherman@septitech.com

