REDUCTION OF WASTEWATER EFFLUENT FROM ON-SITE SEWAGE FACILITIES - CURRENT UPDATES AND FUTURE PLANS

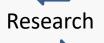
Anish Jantrania and Ryan Gerlich

For Presentation at the Onsite Wastewater Mega Conference
Organized by the National Onsite Wastewater Recycling Association
October 22 - October 25, 2023, 2023

The materials being presented represent the speaker's own opinions and do NOT reflect the opinions of NOWRA.

Presentation Outline

Background Information on TOGP Research Program;


Increasing Use of OSSF in Texas and Technology Trends;

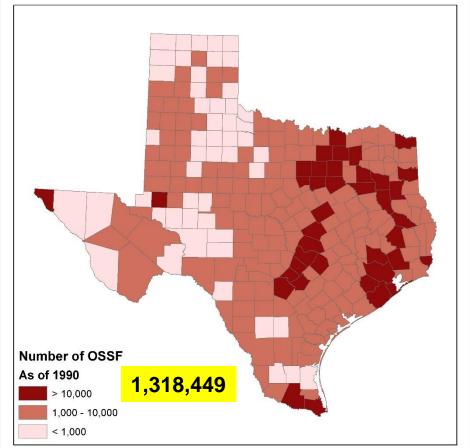
Interests in Reducing Liquid Discharge;

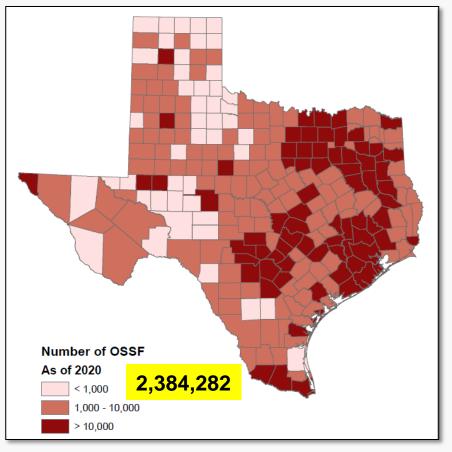
Enhanced Vapor Effluent Discharge (EVED) Evaluation;

Discussion / Q & A

TOGP Research Program

Texas On-Site Sewage Facility Grant Program(TOGP)
 https://www.tceq.texas.gov/permitting/ossf/ossf-grant-program


 Question – Who attended my presentation in <u>San Marcos</u>, <u>TX @ NOWRA-2021? OR read the article "The Texas</u> <u>Model" in OSJ-Spring Issue?</u>


Brief discussion on the \$10 permit fee funded research program in Texas...

Research

Extension

Number of OSSFs in TX then and now... Inventory and Mapping Program...

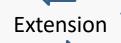
This information was complied from 1990 Census data and OARS data from TCEQ.

About 927,000 new permits issued since 1990... of which about 418,000 (~45%) were for ATU Spray... (# of permits/year v. year)

Extension

Highlights of TOGP-1 (completed) and TOGP-2 (in-progress)

TOGP-1 (2019-2021)


- 1. ATU performance, effects of highstrength and time-dosing (JW);
- 2.LPD design configuration, by the rules and new concepts (GB);
- 3. Reuse wastewater for toilet flushing, treatment-train performance (AJ).

Final reports and conference papers on OSSF Website...

TOGP-2 (2021-2023)

- 1.RV Parks and ATU performance in real-world (JW);
- 2. Drip challenges and recommendations for improvement (GW);
- 3. Effluent flow reduction to minimize need for disposal area (AJ).

Delayed start mid-2022, data collection started late-2022, Draft Report Due in **November 2023!**

TOGP-4: Topic 2.3.4 Reduction of Wastewater Effluent from On-Site Sewage Facilities (E-FLOW)

Under current rules, adequate and suitable disposal area will continue to be a challenge for properties served by OSSFs. Residential and commercial properties are constantly faced with choosing between on-site disposal and the use/enjoyment of valuable real estate. Research is needed to identify technologies and applications that can be:

- 1.Utilized to <u>eliminate liquid water discharge</u> from on-site sewage facilities; and
- 2.Coupled with on-site sewage facilities to <u>utilize roof and/or wall</u> <u>space</u> for disposal area.

..... The goal is to develop solutions for alternate disposal areas.

Question: How many of you are facing this problem in your area?

Utilizing Roof / Wall Space Area?

Examples of Green Roof Green Wall TAMU Main Campus...

Utilizing Roof / Wall Space Area?



Extension

Green Roof in Houston

The building entrance and the LEED Certification signage

The Green Roof covering about one-acre space, and big wet spots nearby indicating over irrigation and/or lack of ET losses. NOTE: AC condensate is used for irrigating the Green Roof.

Eliminate or Reduce Liquid Discharge Using Something Else...

- "Enhanced Vapor Effluent Discharge" (EVED™) Technique... or a modified ET Bed with indoor non-potable reuse?
- My Experience with Masonic Lodge Project in VA (long story...)

Liquid discharge reduced by >90% (ET + Reuse)

Maximizing use of our Research Center

TOGP-1

- ATU
- LPD
- Reuse

TOGP-2

- DRIP
- E-FLOW
- Reuse

We are going to study 1st Generation EVED Technique: <u>Wetland in a Greenhouse</u> Wetlands reduce liquid discharge... (ET losses)

TABLE VII
ANNUAL AVERAGE NET EVAPORATION
(EVAPORATION - RAINFALL)

REPORTING STATION	NET EVAPORATION*, RET INCHES/DAY					
Amarillo	0.21					
Austin	0.14					
Beaumont	0.04					
Big Spring	0.24					
Brownsville	0.15					
Chilicothe	0.20					
Canyon Lake	0.15					
College Station	0.12					

ET Bed sizing for CS 0.12 inch/day = 0.07 gpd/sq.ft.

Q: Can this sizing requirements be reduced? If so, by how much??

Extension

1st Generation EVED Technique: Wetland under a <u>Semi-Climate Control Greenhouse</u>

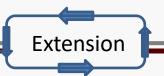
Extension

Ryan found wetland plants from Houston area....

Planted same number and type of plants in both wetlands

Combining two projects...

DRIP and E-FLOW (Late Oct. '22)




E-FLOW Project Plan

- Dose both the wetland cells (~100 GPD) using ATUs from last project, and record the influent and effluent flow (daily average); CHALLENGE – How to measure effluent flow?
- Monitor weather data, rainfall, temperature, wind speed, humidity, etc.;
- Compare the effluent flow (liquid discharge) from both the wetland cells, open cell and greenhouse cell;
- Prepare recommendations for designing EVED technique from the observations!

Measuring Flows...

 GPD going in (Influent) measured using the flow meters installed during the TOGP-1 ATU Project..

GPD going out (Effluent Discharge)
measured using the tool designed
and built by Ryan...

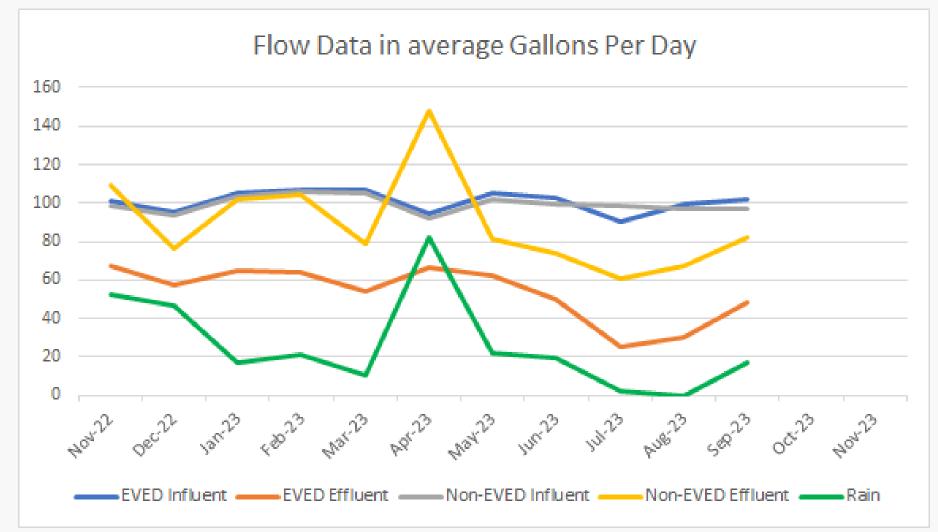
First Freeze.... December 2022...

Extension

Plant Growth Comparisons...

Late February 2023...

June 2023 during the REEU program...

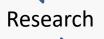

Extension

Data collection, daily averages

Greenhouse Wetland						Open Wetland						
Obs #	Date	Avg Temp	Avg RH%	Influent GPD	Effluent GPD	Obs#	Date	Avg Temp	Avg RH%	Influent GPD	Effluent GPD	GPD
1	11/17/22	57.3	N/A	102.4	36	1	11/17/22	51.3	N/A	99.5	15	
2	11/18/22	60.6	N/A	102.4	51	2	11/18/22	51.9	N/A	99.5	80	
3	11/19/22	48.6	N/A	102.6	77	3	11/19/22	43.0	N/A	98.5	130	
4	11/20/22	52.7	N/A	101.8	72	4	11/20/22	43.3	N/A	99.4	85	
5	11/21/22	50.5	N/A	85.6	51	5	11/21/22	44.6	N/A	83.0	124	
6	11/22/22	60.3	N/A	102.6	76	6	11/22/22	51.0	N/A	99.6	87	
7	11/23/22	69.8	N/A	100.7	55	7	11/23/22	61.8	N/A	99.3	77	
8	11/24/22	65.7	N/A	102.0	100	8	11/24/22	63.9	N/A	99.3	154	131
9	11/25/22	62.5	N/A	102.6	95	9	11/25/22	59.8	N/A	99.3	81	8
10	11/26/22	64.2	N/A	102.8	86	10	11/26/22	56.2	N/A	99.1	272	228
11	11/27/22	63.3	N/A	102.8	69	11	11/27/22	54.8	N/A	99.9	142	0
12	11/28/22	65.4	N/A	102.8	62	12	11/28/22	58.2	N/A	100.5	122	0
13	11/29/22	75.0	N/A	102.4	66	13	11/29/22	71.9	N/A	100.2	85	0
14	11/30/22	60.9	N/A	103.0	52	14	11/30/22	50.2	N/A	99.9	81	0
15	12/01/22	57.3	N/A	102.4	61	15	12/01/22	48.6	N/A	100.3	80	0
328	10/10/23	73.4	75.0	103	0	328	10/10/23	68.9	78.4	101	66	5
329	10/11/23	73.9	72.0	102	2	329	10/11/23	67.9	79.9	101	102	2
330	10/12/23	75.3	73.3	102	24	330	10/12/23	70.1	78.8	100	81	0
331	10/13/23	78.9	65.4	103	45	331	10/13/23	74.9	68.8	101	91	0
332	10/14/23	69.2	60.0	103	48	332	10/14/23	64.2	50.2	101	62	0
333	10/15/23	67.1	60.3	105	50	333	10/15/23	60.5	55.4	102	81	0

Extension

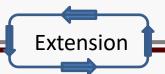
Graphical Presentation of Daily Flow Data


Extension

Data collection, monthly averages

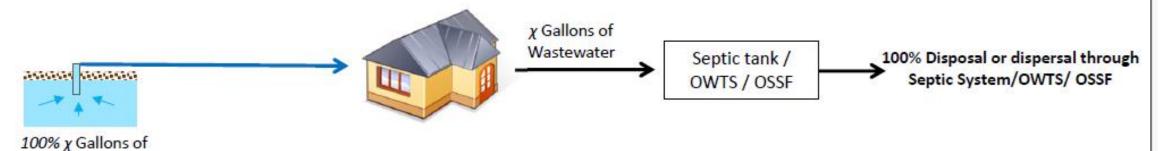
		Aveage Temp									
	Greenhouse, EVED			Open, Not-EVED			RAIN	Greenhouse, EVED		Open, Not-EVED	
	Influent	Effluent	% Reduction	Influent	Effluent	% Reduction	GPD	Temp	%RH	Temp	%RH
Nov-22	101	68	33%	98	110	-11%	53	61.2	N/A	54.4	N/A
Dec-22	95	57	40%	94	76	19%	47	64.9	N/A	61.9	N/A
Jan-23	105	65	38%	103	102	1%	17	61.0	66.6	55.1	73.7
Feb-23	107	64	40%	106	104	1%	11	63.5	67.7	56.5	74.8
Mar-23	106	54	49%	105	79	25%	10	70.3	70.3	64.4	69.3
Apr-23	94	66	30%	92	148	-61%	82	72.1	74.2	66.0	74.0
May-23	106	62	41%	102	81	20%	22	79.6	74.9	75.1	75.6
Jun-23	103	50	52%	100	74	26%	19	86.4	69.8	83.4	70.9
Jul-23	90	26	72%	99	61	39%	3	89.6	66.0	87.4	62.1
Aug-23	99	30	70%	97	67	31%	0	90.9	58.7	89.7	52.1
Sep-23	102	48	52%	97	82	15%	17	86.6	62.3	84.3	59.7
Oct-23											
Nov-23											
AVG	101	54	47%	99	89	10%	26	75.1	67.8	70.8	68.0
RANG	90 - 107	26 - 68	30% - 72%	92 - 106	61 - 148	0% - 39%	0 - 82	61.0 - 90.9	58.7 - 74.9	55.1 - 89.7	52.1 - 75.6

Data collection to end in mid-November for this project reporting, after which it will continue for the next year or two!


Water Balance Model

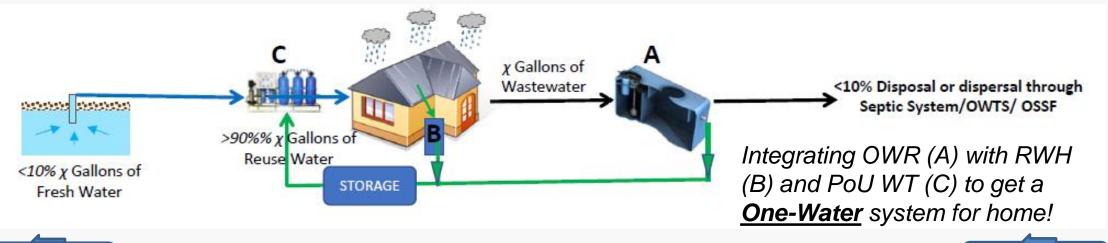
For a home with	225 GPD Flow								
	3,008 sq.ft. min E	T bed needed							
WE GOT ONLY	300 sq.ft. of W								
Research Question: CAN THIS AF	REA REQUIREMEN	IT BE REDUCED	BY NEW E-FLOW DESI	IGNS?					
Simple idea - Load both wetland	s @100 GPD and	measure Outflo	w. Compare measur	ed GPD O	utflow wit	h Estimate	ed value.		
Inflow for Wetland ONLY=	Inflow for Wetland ONLY= 22 GPD Allowed Inflow v			45	2 times; ASSUMED VALUE				
					50% I	50% If true then the area r		needed	
GPD Inflow =	100		GPD Inflow =	100					
GPD Outflow Estimated=	78 COMPAR	E THESE GPD	Outflow Estimated =	55	CHECK AC	TUAL VAL	<mark>UES AT T</mark> I	HE END	
GPD Outflow Actual =	90	(GPD Outflow Actual =	54					
	36	GPD Reduct	tion more by EVE	D comp					
	4.82	cu.ft. per da	ay more than Nor						
	300	from sq.ft.	wetland area						
	0.02	ft/day more ET losses by EVED than Not-EVED							
	0.19 in/								
College Station Data									
Evap - Rainfall =	0.12	inches/day							
EVED Rate =	0.31	inches/day							
	increase in	ncrease in net ET rate							
	2.61	times the N							

Extension


What's Next....

- Continue flow data collection for another year or two;
- Implement a real-world home demonstration project that will incorporate EVED and reuse for toilet flushing to determine effluent flow reduction;
- Evaluate feasibility of using under the parking lot area for effluent dispersal, visit existing project sites;
- Work with the Industry Association (TOWA) and Regulatory Agency (TCEQ) to develop recommendations for rule change!

We Want to Know if this Possible!


Is the Onsite Industry ready to go from this:

to this by 2050?:

Fresh Water

Extension

Questions / Comments?

Extension

THANK YOU

TAMU OSSF/OSSRF TEAM

Anish Jantrania

ajantrania@tamu.edu

Josh Segura and Graduate Research Assistants

June Wolfe

jwolfe@brc.tamus.edu

Ryan Gerlich

rgerlich@tamu.edu

Gabriele Bonaiti

g.bonaiti@tamu.edu

Websites: https://ossf.tamu.edu/ and https://reeu.baen.tamu.edu/

