



Pipes, Pores, and Other Pathways Hydraulic Engineering Principles for Onsite Installers

David Lentz, P.E.

### **Important Disclaimer**

The materials being presented represent the presenter's opinions, and do NOT reflect the opinions of NOWRA.

# Solids, Liquids, and Gases



Solid

Liquid

Gas

# Solids, Liquids, and Gases



# Solids, Liquids, and Gases



### What's the Molecular Difference?



### **Today's Topic - Hydraulics**



# Hydraulics Throughout the Onsite System

#### Leachfield/Drainfield

**Effluent Absorption & Purification** 

#### Septic Tank

T

# What are we Going to Cover?











Drainfield

Daily Flow

Stormwater



Equipment



# What are we Going to Cover?





#### Septic Tank





Drainfield

Daily Flow



Stormwater



Equipment



# **Increasing Diameter Decreases Velocity**



#### As pipe diameter increases, velocity decreases

### Flow Rate: V = Q ÷ A

If the flow rate is 10 gpm, how does velocity change?



### What Happens to Water Pressure?



# Water Pressure Terms

Common terms, same meaning:

- Pressure
- Head
- Static pressure head
- Water column



# **Bernoulli Effect – How Planes Fly**

An airplane wing is shaped so that air flows faster over the upper part of the wing than the lower.

This results in a pressure difference that produces lift.

 Ner.

 AIR FLOW

LOW AIR PRESSURE

**HIGH AIR PRESSURE** 

## What About Pressure in a Pipe?



### **Increasing Diameter Increases Pressure**



# How Does Pipe Slope Affect Flow?





# **Reason for Minimum Cleaning Velocity**



# **Reason for Minimum Cleaning Velocity**



# **Pipe Velocity Profile – Laminar Flow**

#### LAMINAR FLOW



- Velocity increases from wall toward centerline
- Lowest velocity at wall, where solids accumulate

# **Pipe Velocity Profile – Turbulent Flow**

- Velocity more uniform across pipe diameter
- Higher velocity at wall than laminar flow

# **TURBULENT FLOW**



### Laminar to Turbulent Flow







# **Energy/Head Loss Types**

Major Caused by pipe

Frictional resistance between pipe and fluid

Minor Caused by fittings

Direction change due to geometry or velocity change

# Major Loss – Pipe Roughness



#### Rougher pipe = Greater head loss

# Major Loss – Pipe Length



#### Longer pipe = Greater head loss



#### Flow Velocity Increasing



#### *Higher velocity* = *Greater head loss*

- $(4 \, ft/sec)^2 = 16$
- $(8 \, ft/sec)^2 = 64$

Fourfold increase by doubling velocity

### Major Loss – Pipe Diameter



#### Smaller diameter = Greater head loss

# Major Loss – Effect of Pipe Diameter



Higher pipe wall-water contact means greater head loss

### Minor Loss Examples



#### **Entrances** and Exits



#### **Gradual expansions** and contractions

#### **Sudden expansions** and contractions



**Valves** 



**Bends** and fittings

# Minor Loss Example








#### What are we Going to Cover?



## **Common Septic Tank Design Principles**

- Liquid depth
- Volume
- Length

- Length-to-width ratio
- Two compartments
- Tee penetration depths



### **High Flow Reduces Residence Time**

#### Normal Flow

- 4 residents with average flow
- Resident flow = 280 gal/day
- Tank = 1,000 gal

 $\frac{\text{Tank volume}}{\text{Daily flow}} = 3.5 \text{ days}$ 

#### **High Flow**

- 4 average residents + home daycare
- Resident flow = 280 gal/day
- Daycare flow = 280 gal/day
- Tank = 1,000 gal

 $\frac{\text{Tank volume}}{\text{Daily flow}} = 1.8 \text{ days}$ 

Effluent time in tank reduced by high flow

#### **Reason to Pump Tank – Remove Solids**



# Plumbing Check

# Plumbing Check



#### What are we Going to Cover?













Daily Flow



Stormwater



Equipment



#### **Soil Pore Structure**



**Uncompacted Soil** 



#### Compacted Soil













#### Subsurface Effluent Flow Modeling



#### NC STATE UNIVERSITY

#### **Combined Treatment and Dispersal System**



Play



### **Clogged Drainfield – Solids**



#### **Clogged Drainfield – Motor Oil**

## Clogged Drainfield – Papier-Mâché

#### What are we Going to Cover?











Daily Flow



Stormwater



Equipment



#### **Primary Sources of Residential Flow**





#### Total Simultaneous Flow ~ 17 gpm





#### What are we Going to Cover?











Daily Flow



Stormwater



Equipment







Gallons per acre of water produced by a 1-inch rain event: <u>Raindrop Trivia</u>

A. 7,000
B. 17,000
C. 27,000
D. 270,000

- 2 to 5 millimeters in diameter
- 20 mph impact velocity
- 18,000 drops/sf in a storm
- 784,000,000 drops/acre in a storm

Raindrop energy detaches soil grains from the ground surface



Raindrop energy detaches soil grains from the ground surface



#### **Sheet Erosion**

Fine-grained soil particles are carried downslope by rainwater



#### Why is Soil Erosion a Concern?

Loss of organic topsoil inhibits vegetation
Loss of soil structure and permeability
Loss of minimum system cover depth
Eroded soil grains transported elsewhere

## Sheet Erosion



# Gully Erosion

#### **Vegetation Inhibits Erosive Forces**

#### **Erosion Control Best Practices**

• Vegetate disturbed soil surfaces

• Mulch seeded area

• Keep slopes shallow

• Preserve natural vegetation

• Promote a deep root system




# UNIVERSAL SOIL LOSS EQUATION



 $A = R \times K \times L \times S \times C \times P$ 

### **Unstabilized – Heavy Erosion**

## **Seeded – Less Erosion**



#### Soil Loss = 3.5 Triaxles Per Year!



Soil Loss = 0.75 Triaxles Per Year



**Uncontrolled Erosion – One Storm** 

LONG HILL ESTATES

MARK TOLEDO 860-301-2339 CHUCK HALLER 860-558-6000

## **Erosion Control Blanket**





# Check Dams







# What are we Going to Cover?











Daily Flow



Stormwater



Equipment





# **Open System Pressure Varies**



# **Closed System Pressure Constant**

Uniform pressure exists everywhere in a closed system



# **Equipment Hydraulics**



Force multiplier is 100

# **Concepts to Take With You**

- Fluid flow affects many aspects of onsite systems
- Fluid flow is affected by pipe type, size, and shape
- Fluid creating friction reduces energy and causes head loss
- Fluid changing direction reduces energy and causes head loss
- The open soil pore network keeps a drainfield functioning
- Mitigating soil erosion is about controlling precipitation energy



Presented by David Lentz, P.E. dlentz@infiltratorwater.com www.infiltratorwater.com