EVALUATING STUDENT LEARNING AND KNOWLEDGE GAINS DURING AN UNDERGRADUATE SUMMER REUSE WATER RESEARCH EXPERIENCE

> Janie M. Moore, Anish Jantrania, Terry Gentry, Ali Fares, Ripendra Awal, Ryan Gerlich

The opinions and statements made in this presentation are those of the speaker and not NOWRA or sponsors of the 2023 Mega-Conference

Outline

- Introduction
- Background and Methodology
- Results
- Discussion
- Conclusion
- Questions

Introduction

USDA REEU

• Research and Extension Experiences for Undergraduates (REEU)

"This work is supported by Research and Extension Experiential Learning Fellowships for Undergraduates grant no. 2016-67032-24993 from the USDA National Institute of Food and Agriculture."

• The National Institute of Food and Agriculture (NIFA) provides leadership and funding for food, agricultural, natural resources, and human sciences. The agency prioritizes ensuring students from all backgrounds have an opportunity to pursue careers in agricultural and related sciences. The agency seeks to provide experiences to undergraduate students, leading them to careers in the agricultural workforce or to continue their education in graduate school.

TAMU Reuse Water Quality REEU

- Goal of the program:
 - 1) hands-on learning experiences in reuse water quality;
 - 2) exposure to careers in agricultural research and extension, and
 - 3) a pathway to graduate school.
- Participants will have the chance to interact with a multidisciplinary team of extension specialists, agricultural engineers, and soil and water microbiologists, from the Texas A&M University (TAMU) and Prairie View A&M University (PVAMU) campuses.

The Why?

• Addressing a critical environmental concern

Reuse water systems demonstrate a proactive approach to addressing water scarcity

• Experiential Learning and Traditional Classroom settings

Opportunity to actively engage in research related to water quality Real world applications and developing skills that are transferable to careers in water quality

• Long-term impact

Potential to inform the design and improvement of future undergraduate research programs in Food, Energy, and Water Nexus

Importance of Assessment for Summer REEU

- Pedagogical Value
- Evidence-Based Insights
- Career Pathways
- Long-term benefits
- Research Advancement
- Educational Innovation

Research Objectives

- Assess knowledge gains
- Analyze self-evaluation of skills
- Examine attitudes toward research and careers

Assess transition to extension positions

• Study program impact over the past years *Analyze COVID-19 impacts*

Background and Methodology

Reuse water REEU

- 5 week paid internship
- In-class lecture

Basic scientific principles related to hydrology, water quality, and their connection to Onsite Sewage Facilities (OSSFs)

- Hands-on research
- Experience communicating with extension personnel
- Interaction with industry
- Field trips

Assessment

- Pre assessment and Post assessment
 <u>To evaluate knowledge levels</u>
- Student assessment of learning gains (SALG)
 To understand their attitudes and personal assessment of learning gains
- 40 students, over 3 years from 15 universities
- Data collected 2019, 2021, 2022, and 2023

Post assessment SALG was not collected in 2022

Classroom Knowledge

- OSSF (Onsite Sewage Facility)
- OWR (Onsite water reuse)
- Reuse
- Soil
- Microbiology
- Etc.

The questions in this section evaluate your understanding of the concepts that will be explored in the class

Presently I understand...

	Not at all	Just a little	Somewhat	A lot	A great deal
Water availability as it relates to the quantity of water on earth	0	0	0	0	0
Components of water quality, salinity, drinkability, and treatment	0	0	0	0	0
What a centralized sewer system is for	\bigcirc	0	\bigcirc	0	\bigcirc
The functions and purpose of an Onsite sewage facility (OSSF)	0	0	0	\bigcirc	\bigcirc
The functions and purpose of an Onsite water reuse system (OWR)	0	0	0	0	0
Difference between anaerobic and aerobic treatment	0	0	0	\bigcirc	\bigcirc
At least on type of onsite wastewater treatment technology	0	0	0	0	0
The concept of Reuse Water Quality sampling, analysis and/or reporting	0	0	0	0	0
The composition of soil and how it is formed	\bigcirc	0	\bigcirc	0	\bigcirc

SALG

• Understanding

SALG - Student Assessment

- Attitudes
- Skills

each of the following?							
	No Gains	A Little Gain	Moderate Gain	Good Gain	Great Ga	in N/A	
What amount of consciousness/curiosity was gained when thinking about what your water contains, and the safety of your water?	0	0	0	0	0	0	
Water Quality and Quantity, especially in Texas	\bigcirc	0	0	\bigcirc	\bigcirc	0	
Water treatment before and after discharge	\bigcirc	\cap	\cap	\cap	\bigcirc	\cap	
On-site sewage facility	The fo Preser	llowing que htly, I am	stions evalua	udes 🖯	This section evaluates Skill Presently I can		
On-site water reuse				Not at all	С	r resentry, r can	
On-site water treatment technologies	Enthusi	astic about th	e subject of	0	C	Name one on-site	wastewater
Reuse water quality (RWQ) sampling, analysis and reporting	water re	euse quality	n ar fin a		С	treatment technolo	ogy
Types of water pollutants and	subject	area with frie	nds or	\bigcirc		Identify patterns in	ı data
pathogens	Interest	ad in taking a	r nlanning		Perform microbial analysis using plating techniques		
EPA MCLs	to take	additional clas	r planning sses in this	\bigcirc	С		
Direct and indirect potable reuse in Texas	subject				C	Perform water qua	ility sampling
Water quality microbial	Confide subject	ent that I unde	rstand the	\bigcirc	C	Use equipment to	measure pH
Emerging contaminants	Willing	to consider a	career as	\bigcirc	C	Use equipment to	measure DO
Water quality impairments in Texas	an exte	nsion speciali to consider a	st career in	U	D	Use equipment to conductivity	measure
Soil formation and composition	the Wat academ	ter Industry (c nia, legal, gove	onsulting, ernment,	0	С	Use equipment to Nitrate and Chlorid	measure de
Learning Gain	S Interest	ed in attendin	g graduate	0		Determine the tota a water sample	Il coliform from
	Someo	Someone who has assisted (an) organization(s) in water quality efforts before (as an employee or volunteer)				Work effectively w	ith others
	organiz efforts k or volur					Prepare and give oral presentations	

As a result of your work in this class, what GAINS DID YOU MAKE in your UNDERSTANDING of

Please comment on your present level of interes

s that you have

	Not at all
Name one on-site wastewater treatment technology	0
Identify patterns in data	\bigcirc
Perform microbial analysis using plating techniques	\bigcirc
Perform water quality sampling	\bigcirc
Use equipment to measure pH	\bigcirc
Use equipment to measure DO	\bigcirc
Use equipment to measure conductivity	\bigcirc
Use equipment to measure Nitrate and Chloride	\bigcirc
Determine the total coliform from a water sample	\bigcirc
Work effectively with others	\bigcirc
Prepare and give oral presentations	\bigcirc

What do you expect to be able to do at the

Results and Discussion

Attitudes. Presently I am	2019			2021		2022		2023	
· · · · · · · · · · · · · · · · · · ·	2019 Pre	Post	2021 Pre	Post	2022 Pre	Post	2023 Pre	Post	
Enthusiastic about the subject of water reuse quality	4.00	4.63	4.56	3.88	4.25	4.10) 3.67	4.09	
Interested in discussing the subject area with friends or family	3.88	4.88	4.56	3.88	4.33	4.30	9 4.00	4.00	
Interested in taking or planning to take additional classes in this subject	4.00	4.88	4.11	3.00	3.83	3.50	9 4.00	3.82	
Confident that I understand the subject	3.63	4.38	3.33	3.88	2.50	4.30) 2.92	4.36	
Willing to consider a career as an extension specialist	3.50	3.75	4.00	2.88	3.42	2.70) 3.33	2.91	
Willing to consider a career in the Water Industry (consulting, academia, legal, government, etc.)	3.88	4.63	4.22	3.75	3.25	3.20) 3.67	3.73	
Interested in attending graduate school	4.75	4.50	3.89	3.88	4.08	4.60) 3.17	3.73	
Someone who has assisted (an) organization(s) in water quality efforts before (as an employee or volunteer)	3.25	3.75	3.11	3.25	2.17	3.20) 2.33	3.91	
Average	3.86	4.42	3.97	3.55	3.48	3.74	3.39	3.82	

Student assessment of learning gains

		A Little	Moderate			
Question	No Gains	Gain	Gain	Good Gain	Great Gain	Total
What amount of consciousness/curiosity was						
gained when thinking about what your water						
contains, and the safety of your water?	0%	0%	0%	35%	65%	26
Water Quality and Quantity, especially in Texas	0%	0%	7%	22%	70%	27
Water treatment before and after discharge	0%	0%	0%	33%	67%	27
On-site sewage facility	0%	0%	7%	22%	70%	27
On-site water reuse	0%	0%	4%	22%	74%	27
On-site water treatment technologies	0%	0%	4%	30%	67%	27
Reuse water quality (RWQ) sampling, analysis						
and reporting	0%	0%	4%	30%	67%	27
Types of water pollutants and environmentally						
transmitted pathogens	0%	4%	8%	23%	65%	26
EPA MCLs	4%	8%	15%	31%	42%	26
Direct and indirect potable reuse in Texas	0%	4%	15%	31%	50%	26
Water quality microbial indicators	0%	4%	8%	50%	38%	26
Emerging contaminants	0%	0%	4%	63%	33%	27
Water quality impairments in Texas	0%	7%	11%	48%	33%	27
Soil formation and composition	0%	0%	27%	35%	38%	26

Student responses from 2021

- Student A: "Now I'm awake about the water industry and how important [it is] for us, the humans, and the environment. I would like to continue working in this area in a future."
- Student B: "I learned more than I expected"

Conclusions and Future Direction